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Preface

There have been several trends over the last decade in pattern
recognition technology. For example, sensor technology has recently
provided a means of collecting high resolution range images (data) of
scenes and objects, and many individuals within the pattern recognition
community have been quick to recognize the promise of this new form of
data. Likewise, several realizations of spatially oriented parallel
processors have appeared increasingly promising with respect to
providing a real time method of processing the large volume of data
which are collected by imaging sensors. Neither of these technological
concepts are in reality new or original. However, the recent advances
in microelectronics and optical sensors have made the application of
these technologies realizable, even within the restrictive cost and size
constraints of tactical military systems. Thus, when this dissertation
was initiated, the goal was established to investigate analytical
methods of predicting the performance of a spatially oriented target
classification processor as applied to range images. This goal was
reevaluated and revised upon recogniziug the following two
observations. First, the highly nonlipnear behavior of neighborhood
transformations generally limit the statistical tractability of cellular
logic processors to Monte Carlo performance analysis techniques.
Secondly, due to the newness of both image quality .range data and
cellular logic processor technologies, no generally applicable methoé of
designing 3-D feature measurement algorithms was available. Indeed,
only a few individuals were experimenting in this field, and it Dbecame

obvious that, in general, their approaches to algorithm design more
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closely resembled an art form than a science. Therefore, with the
sponsorship of the Air Force Avionics Laboratory, the uniqueness of 3-D
range data was investigated, and numerous neighborhood transformation
algorithm design techniques were developed and evaluated. Eventually,
an algorithm design technique emerged which appeared to exhibit the best
properties of several earlier approaches. This dissertation tutorially
describes this investigation, the algorithm design technique, and some
of its performance characteristics.

I would like to sincerely thank my advisor, Dr. Matthew Kabrisky,
of the Air Force Institute of Technology for his timely suggestions and
encouragement. The critical analysis and support of Dr. John Jones and
LtCol Joseph Carl of the Air Force Institute of Technology, Dr. Stanley
Robinson and Dr. Stanley Sternberg of the Enviormmental Instituire of
Michigan, Dr. Peter Miller of the Perkin Elmer Corp., and Dr. Bradley
Sowers of General Dynamics (Convair) are also very much appreciated. I
would also like to thank Ms Karen Olin of Hughes Research Laboratories
for her helpfulness. Finally, the understanding and patience exhibited
by my wife, Marilyn, and daughter, Emily, can neither be underestimated,
nor forgotten.

Lawrence A. Ankeney
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Notation

Description
The set of all possible images (events)
that may occur within an IxJ matrix

The subset of images in (@ that erode to
the ith image (E;) in the range of erosion

The subset of images in Cl that dilate
to the 1*P image (D') in the range of
dilation

An image (event) in Q

The ith image (event) in QL

The 15*P element (pixel) of A

The complement of the binary image A

The closure of A with respect to
neighborhood B

The opening of A with respect to
neighborhood B

The smallest event A in Cl which can
erode to the nth event in the range of
erosion

The largest event A in Cl which can
dilate to the m'D event in the range
of dilation

The acceptance window (set of integers)
for the iP processor branch

A set of spatially related cells which
defines a neighborhood with respect to
a specific (root) cell. Also referred
to as a structuring element

The reflection of the B neighborhood
through its root cell

The neighborhood (structuring element) B
positioned with its root cell superimposed
on the 1)t0 cell of the image A

A specific neighborhood (structuring
element)

35

29

25

27

25

31
45

45

37

31

109

19

25

25
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Symbol Description Rage

J’ The set of images (events) in the range 28
of dilation

p° The mth event in the range of dilation 27

DB(A) The dilation of the image A with respect 25
to the B neighborhood

8 The set of images (events) in the range 35
of erosion

En The nt'h event in the range of erosion 35

EB(A) The erosion of the image A with respect 31
to the B neighborhood

EERO The end erosion operation 53

€ "an element of" 25
A null (all state zero) image i1

H A noise free image 43

Li The logical state (true or false) of 114
the it® branch

MAT The medial axis transform 52

N(O;!z) Zero mean Gaussian noise with standard T1
deviation o

n Abreviation for noise 120

Py Probability of detection 65

Pta Probability of false alarm 65

P Probability of miss 65

qno Probability of misclassification 65

ry The residue count (number of cells 109
remaining in state "1") at the output
of the ith branch

s A value associated with a signal 120

SEL The 1P structuring element 23




Tg(4)

Th(A)

Description

The transformation of the A matrix
with respect to the B neighborhood

A specific threshold value

The result of thresholding image A
at value Th

“contained in or equal to"

"for every"

T4
T4

25
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Abstract

The introduction of high resolution scanning laser radar systems,
which are capable of collecting data in the form of range and
reflectivity images, is predicted to have a profound influence on the
development of processors capable of performing autonomous target
classification tasks. The actively sensed range images are shown to be
superior to passively collected infrared images in two areas: the
actively sensed range images are relatively insensitive to diurnal and
envirommental variations, and the range images provide a direct measure
of the scene's three-dimensional shape rather than depending on thermal
variations to provide shape information. Additionally, the amount of
laser energy reflected from each surface in the scene can be measured,
thus providing an additional reflectivity image of the scene, An
approach to processing range images via cellular logic {neighborhood)
transformations is described, and a unique neighborhood transformation
algorithm selection procedure is developed and generalized to an extent
that geometric shape measurement algorithm s.lection can be performed in
a "cookbook™ fashion. The concepts of residue set and residue set
spread functions are defined and shown to provide significant insight to
the feature extraction effectiveness and potential false alarm rate of
the algorithm under consideration. A hypothetical scenarioc and
processor architecture are described and the algorithm design approach
is used to select a sequence of neighborhood transformations which
perform three~dimensional feature measurement of rectangular box and
truncated cone shaped geometrical objects. A Monte Carlo performance
analysis is used to demonstrate the utility of the design approach by

characterizing the ability of the processor to olassify randomly
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positioned three-dimensional objects in the presence of additive noise,
scale variations, and other forms of image distortion. An illustrated
tutorial 1is provided to introduce the concept of neighborhood
transformations and to develop the two and three-dimensional erosion and
dilation operations which are used for noise filtering and feature

measurement within the proposed processor design.

xiv




I. Introduction

For many years man has attempted to construct machines which
perform tasks similar to those easily accomplished by most humans. For
example, machines capable of uniquely classifying two-dimensional
geometric objects such as printed letters, finger prints, or audiographs
have yet to be designed for use in an environment where variables such
as scale, rotation, font, background, energy, and noise cannot be
controlled. The problems associated with the classification of
three-dimensional objects compound these difficulties by adding a third
spatial dimension within which the objects can be translated and
rotated. Thus, very little success has been demonstrated in designing
machines which can autonomously (i.e. without human intervention)
acquire and classify tactical vehicles such as trucks, tanks or jeeps in
an uncontrolled environment such as a battlefield. Nevertheless, the
desirability of obtaining such a machine is obvious.

The difficulties encounte.,ed in attempting to totally describe
tactical targets and their backgrounds in either a Gestalt or
mathematical sense can generally be attributed to either the diurnal
variability of the data (which prohibits modeling the objeects or
background as a stationary random process, Ref. 23) or the inability to
measure scene information that is directly related to the geometrical
shape of objects within the scene. Passively collected infrared (IR)
data is a classic example of a data base which exhibits both these
shortcomings. Since passive IR data is a measure of the thermal

emissivity of the scene, it is very sensitive to diurnal variations such

as time of day, solar loading, moisture content and, to a certain




extent, environmental history. Likewise, thermal emissivity offers only
an indirect and relative measure of an object's shape. Thus, designers
of target classification algorithms have been forced to use ad hoc
features and suboptimal feature extraction/measurement techniques, A
more subtle but extremely relevant issue associated with the 4inability
to model targets, noise, and clutter is that, without such a model,
volumes of real world data must be collected for Cfeature sélection,
algorithm ¢training, and processor performance evaluation purposes.
Additionally, more often than not, sensor peculiarities tend to make the
data collected with one sensor essentially useless for designing or
evaluating target classification processors which will use data
collected by other sensors. As a result, the expense associated with
collecting a statistically significant data base is 1inevitably
prohibitive and the data available for feature selection, algorithm
training, and evaluation is generally limited.

Fortunately, recent advances in sensor technology and practical
realization of parallel processor architectures may give a new lease on
life to the tactical target classification community. The Air Force
Avionics Laboratory has, through the Environmental Institute of
Michigan, recently demonstrated a limited capability to classify (and
possibly identify within classes) tactical targets in real time by
processing high resolution image quality range data in a spatially
organized parallel processor not dissimilar in design to that proposed
by Unger (Ref. 25). Even though other commercial and academic
institutions have also indicated varying degrees of success in this
area, the algorithm design and selection process of such a machine has,

unfortunately, remained an art and performance evaluations have




generally been limited to a few samples of real world data. This
dissertation will attempt to remove the mystery surrounding the
uniqueness of actively ocollected range data and to exploit the
consistency of this format of data by developing a unique "cookbook"
approach to processor algorithm selection and to evaluate the
performance trends of a processor designed in accordance with this
cookbook. Chapter II will first describe the virtues and uniqueness of
actively collected data as compared to the various forms of passive data
which have been historically available to the tactical target
classification community. Chapter III will then briefly describe
cellular logic processors and descoribe 1in greater detail a useful
variety of cellular 1logic operations (also known as neighborhood
transformations) and provide a tutorial description of some of their
applications and properties. Chapter IV then develops a step by step
approach to the design of a target classification processor which uses
cellular logic operations. The emphasis of Chapter IV is in using the
three-dimensional information content of the data and providing an
approach to shape classification algorithm selection which, when
combined with an appropriate decision criteria, supports low probability
of error and false alarm rate performance goals. Chapter V provides an
extensive Monte Carlo performance and parametric sensitivity analysis of
this processor and attempts to relate the demonstrated performance to
the operational appropriateness of the assumptions and design approach.
Chapter VI then summarizes the conclusions and provides recommendations
for future studies.

While a specific set of hypothetical targets is proposed, features

selected and extracted, and performance indicated for a given proocessor




architecture, the reader's emphasis should remain with understanding the
advantages of working with active imagery and the various tradeoffs
asgsociated with the proposed cellular 1logic design approach. For,

without understanding these issues, these technologies will remain an

art fornm.
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II. A New Breed of Tactical Data

Historically, two generic forms of data have been available to the
tactical target identification community: actively collected data where
energy is transmitted and some measure of the reflected signal is
detected, and passively collected data where the detector senses only
naturally occurring reflected or radiating information. This' chapter
will first briefly discuss the qualitative information content of each
data type and then compare these to actively collected image quality
range data. These comparisons will be made in the context of the
specific issues or problem areas associated with the tactical target
classification task.

Active vs Passive Data

Active sensors are generally capable of measuring the intensity of
the reflected signal as well as the phase or time delay between the
transmitted and received pulses. The intensity (energy) of the return
provides a relative measure of the surface reflectivity and the phase
can provide either an absolute or relative measure of range. Antenna
size and processing limitations imposed on tactical missile airframes
have not permitted active radar sensors sufficient angular resolu..ion to
effectively extract three-dimensional target shape information from the
scene. Passively collected data such as television, photography and
infrared (IR) are capable of demonstrating image quality resolution.
However, range information is not readily accessible in passively sensed
data, and a direct measurement of a scene's three~dimensional

information content is not available. Thus, any information contained

in passively collected data relative to the scene's three-dimensional
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shape must be extracted indirectly from the multigrey level intensity
data. An ideal tactical sensor might well combine the high resolution
capabilities of an imaging optical or IR sensor with the accurate range
measuring capabilities of an active sensor to provide image quality
three-dimensional range data.

The remainder of this chapter will describe specific tasks or
problems associated with tactical target identification and while doing
so illustrate the potential improvements (relative to passive data) that
three-dimensional range data provides. As a convenient notation, the
use of the term 3-D data will henceforth refer to multigrey level image
data in which the third dimension grey level provides relative or
absolute range information and the term 2-D data will refer to multigrey
level image data in which the third dimension grey levels represent
scene information other than range or height. Note that 2-D binary data
may refer to either thresholded (clipped) 3-D or 2-D data.

Jactical Target Classification Considerations

Every shape or object classification task has its unique and
complex idiosynchrasies and, without the existence of a general theory
which can be appiied to all pattern classification tasks, one must
address the "physics" associated with the particular task at hand. In
such a manner, this section will briefly describe three specific data
related issues which pertain specifically to the task of identifying

targets in a tactical mnilitary enviromment. Relevant differences

between passively collected 2-D data and actively collected 3-D data

will be emphasized.

Orey Level Interpretation. As desoribed earlier, passively

collected data depends solely upon sensing information which is inherent




in the scene such as relative thermal temperature or reflection of
natural radiation., As a result, passively collected data 1is sensitive
to local temporal and spatial variations in the enviromment such as
ambient temperature changes, precipitation, humidity and solar radiance.
Hence, the grey levels of a given scene will in general not be ergodic
and will be statistically nonstationary (Ref. 23). Figures 1(a) and (b)
provide an example of the variable nature of passively collected
infrared data. There was a twelve hour delay between the collection of
the first and second images. Note that not only have the relative grey
levels of the scene changed, but the grey level rates of change (the
intensity gradients) have also varied noticeably. Variations such as
these are referred to as diurnal variations and are common to all forms
of passively collected imagery. To compound the problems associated
with diurnally varient data, passively collected data contains no direct
measurement of the scene's three-dimensional shapes or volumes. As a
result, passive data requires the use of features such as edge
gradients, corners, and areas of constant texturs (which may or may not

be relevant to the true three-dimensional content of the scene) for the

target classification task.

Actively collected data, on the other hand, provides significant
improvements in the ability to interpret the grey 1level information.
First, because the sensor has its own radiating source and the velocity
of that energy is essentially constant, the reflected return signal will

provide (within the design limits of the sensor) the same time delay or

e

phase shift regardless of most environmental variations. Of course

there will be exceptions such as the loss of foliage from deciduous

trees or shrubs and the accumulation and drifting of snow, but in




general, actively collected 3-D data is relatively insensitive to the
diurnal variations which have historically plagued passively sensed
data. Secondly, no longer must a system designer attempt to indirectly
extract three-dimensional information from the imagery. The imagery is
the three~dimensional information! In this context, actively collected
3~-D data is superior to passively collected 2-D data.

Feature Selection and Medeling Consideratons. The selection of
features or discriminants which permit the identification of targets and
the rejection of nontarget objects and noise are of primary importance
in all pattern recognition tasks. There are generally an unlimited
number of features or combinations of features which may be used to
separate tanks from trucks or trees such as weight, mobility, color,
smell or audible emissions. However, for the task of classifying
objects on the ground as viewed from an airborne platform, the most
intuitively obvious features should be directly related to the
three-dimensional shape of the target.

As discussed in the previous section, the diurnal variability and
lack of directly measurable three~dimensional shape information in
passively collected data has forced target classification algorithm
designers to wuse various gr2y level normalization techniques and
gragient features such as edges, corners and texture. Since much effort
has been expended in developing and characterizing these techniques,
there is no need to abandon their use unnecessarily. However, before
applying these techniques, their application to 3-D data must be

reviewed and understood. Edges, for example, are no Jlonger gradients

associated with changes in the scene's reflectivity, color or

f temperature (as in 2-D data) but now become the points of two
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intersecting surfaces. Likewise, areas of constant texture represent
surfaces in 3-D data and corners indicate the intersection of three
surfaces. Additional features now become available such as volume
measurements and height to length or width ratios and a high pass filter
becomes a potential terrain removal operation under certain scenarios
such as 3=D data collected from a look-down perspective. Thus, 3-D data
does not necessarily require a new set of features, noise filters, or
normalization techniques, but whatever techniques are used must be
understood as applied to the 3-D range information.

As a means to illustrate the results of applying a common operation
to both 2-D and 3-D data (and to demonstrate the insensitivity of 3-D
data to diurnal variations), an edge detection operation will be applied
to the images of Fig. 1(a) and (b) as well as to the same scene as
viewed with 3-D actively collected range data. The gradient measurement
technique selected for this example is the well known Kirsch operator

(Ref. 2) which is defined at the point X as

7
max[1,:fg[(ai+ai+1+ai+2) -3(ai+3+ v e +ai+7)]] &)
a, a, a,
where the subscripts are evaluated modulo 8 for the a7 X a3nieghborhood
3 %5 2y

of X. If a threshold operation is applied to the image following the
gradient operator, edges can be defined as those gradients which have a
magnitude exceeding the threshold value. This threshold may either be
adaptive (related to the magnitude or variability of the gradients) or a
constant value depending on the complexity allowed the processor. The
Kirsch operator of Eq. 1 was first applied to the passively collected

(infrared) intensity images of Fig. 1, and an edge threshold was then
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applied to obtain the edge images of Fig. 2(a) and (b). Note that the
edges in these images correspond to the intensity transitions (i.e.
changes in surface temperature) in the scenes of Fig. 1(a) and (b)
respectively. Also note the obvious differences between the edge images
of Fig. 2(a) and (b). Since the same threshold was applied to both
gradient images, these differences can be attributed almost exclusively
to the diurnal variations exhibited by the passively collected data
during the 12 hour delay between scene samples. To contrast the edge
images of the passively collected scene data, Fig. 3(a) and (b) provide
the comparable edge images for the same scene but sampled with an active
(laser) range measuring sensor. Note in this case that the edges are no
longer related to the surface temperature of the scenes but instead
correspond to discontinuities in the range data. Also, the edge images
are almost identical which clearly illustrates the insensitivity of the
actively collected range data to diurnal variations in the scene.

As a final observation concerning the selection of features, when
range (or height) imagery is used, it may not be necessary to collect
and analyze large quantities of imagery data (as is necessary for
passive IR data) in the search of target features which are invariant to
diurnal variations. The diurnal consistency of 3-D data, when combined
with the true three-dimensional shape information contained in the data,
permits the a priori selection of potential target features (before
seeing any data). And, for the first time, tactical targets, clutter,
and terrain can be realistically modeled (either in software or physical
scale models) for Monte Carlo simulations or statistically modeled for
analytical performance comparisons. Conceptually, similar modeling

techniques could be applied to passively collected sensor information,
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but the neceasity to be able to model many possible environmental,

seasonal and topographical scenarios not only makes the model quite
complex but also requires an extensive data base against which to design
the model. Such target and clutter modeling attempts have been and are
presently being made for passive IR scenes (Ref. 23), but succeas has
been limited primarily by the lack of a sufficiently robust data base
for design and validation purposes. In comparison, the generation of a
complete three-dimensional target and clutter model should be a low risk
task requiring only 1limited amounts of 3-D data for training and
validation.

Geometrical Distortions. Just as a sample and hold circuit
provides a less than perfect discrete representation of a continuous
time varying wave form, the discrete range sampling of a three
dimensional scene also will result in a less than perfect discrete
raepresentation of the scene. The spatial distortions which result from
such a digitization process are referred to as digitization or
quantization noise and the specific digital represeniation of a scene is
in general quite sensitive to the relative position of the scene with
respect to the digitizing grid. Additionally, in a system that requires
a finite amount of time to sample the acene, any motion of the
digitizing grid relative to the scene or objects in the scene will
induce additional distortions in the form of twisting or stretching of
the discrete image. In a tactical environment, the unpredictable
motion, translation, and rotation of objects of interest in the scene,
the dynamic capabilities of tactical airborne sensor (data collection)
platforms, and the finite spatial resolution of the sensors themselves,

combine to provide sufficient justification to discuss these forms of

14




geometrical distortions in detcail.

Figure 4(a) provides an example of the spatial variations which
occur when the height of a continuous three-dimensional hatbox shaped
object is placed upon and discretely sampled by a regular digitizing
point matrix. (Such a digitizing concept is not dissimilar to the
capturing of regularly positioned spikes by a randomly thrown hoop (Ref.
12) so often referred to in geometrical probability discussions.) It
can be seen in Fig. 4(a) that when moved to a different position on the
digitizing matrix, the digitized representation of the hatbox exhibits a
quite different shape. Note that once the continuous hatbox object is
positioned on the digitizing matrix, it can be rotated around its
central axis without affecting its digitized representation. Objects
which exhibit this property are defined to be rotationally invariant.
Figure 4(b) provides the results of digitizing two samples of a shoebox
shaped object which is sensitive to both rotation and translation. In
this case, the digitized image of the rotated and translated object has
had one of its corners "rounded off"™ and its width and 1length are no
longer constant. Quite often the geometrical distortions associated
with digitization are surprising, especially in small (with respect to
the resolution of the digitizing matrix) objects.

Not only will static translation or rotation of a scene (with
respect to the digitizing grid) induce varicus forms of geometrical
distortions, any dynamic motion between the scene and the digitizing
matrix will also induce additional geometrical distortions to the
digitized image. For example, if the digitizing matrix sampled height

sequentially from left to right, one row at a time, and the hatbox and

shoebox objects described earlier were moving at a constant velocity
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across the digitizing matrix, the resulting digital representations of
these objects would be skewed or stretched.

An equivalent method of portraying both the static and dynamic
digitization processes described above can be realized by positioning
the continuous objects (targets) on a surface (terrain) and sampling the
range from an airborne platform to the surface with a 1line scanning
range sensor. If the sensor platform passes over the terrain at a
velocity so that each scanned line (row) of data neither over nor under
samples the previous or next 1line of information, a topographical
representation of the digitized objects and terrain would be obtained.
Likewise, in this portrayal, geometrical distortions such as skewing or
stretching would be introduced by either movement of the objects beneath
the sensor or a constant roll or pitch rate in the sensor platform.
Finally, since the resolution cell size is proportional to the altitude
at which the sensor is carried above the terrain, a change in sensor
altitude will result in scale changes to the digitized image.

Unfortunately, geometrical distortions such as those described
above (digitization noise and sensor/target motions) are pervasive in
both active and passive data collection efforts. In systems which use
passive data, however, digitization  noise and small platform
instabilities have not generally been of great concern to target
acquisition algorithm designers because the diurnal variability of the
data has demanded the 1lion's share of design effort. In systems
designed to use 3-D data, diurnal variations should no 1longer be the
driving limitation to algorithm development and, if the desaigner so
desires, the modeling of the above described geometrical distortions for

inclusion in performance analyses can be Jjustified by the true
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three-dimensional information contained in the 3-D data.

In summary, the most obvious ad potentially far reaching
advantages that image quality actively collected range data has when
compared to similar resoclution passively collected data would be the
ability to directly measure information which describes the
topographical (three-dimensional shape) content of the scene and that
this measure of information is not sensitive to most diurnal variations
of the envirorment. Related to these issues are potentially significant
improvements in the understanding and selection of features which are
directly related to the three-dimensional shape of the target, the
potential to select in an a priori manner target features, and the
ability to construct realistic target and clutter models for digital
system performance analysis. Chapters IV and V will consider each of
these characteristics in the design of the target classification
processor and its peformance analysis. However, Chapter III will first
describe the spatial operations known as neighborhood transformations.
A clear understanding of these ceilular logic functions (and their
structuring element equivalent operations) is needed to understand the

design of the shape classification processor of Chapter IV.




III. Neighborhood Transformations

Neighborhood transformations (also referred to as cellular logic
operations) refer to a generic class of spatially oriented operations
which are closely related to the studies of computational geometry (Ref.
16) and cellular automata (Ref. 3). In a macroscopic sense, a
neighborhood transformation operates on an entire array of cells to
create a transformed array. The transformation, however, is a 1local
operator since the state of each cell in the new transformed array is
only a function of its present state and the states of its neighboring
cells. More specifically, the neighborhood transformation (T) of the

array (A) is defined as
TB(A) = T(A,B) (2)

where TB(A) is the transformed array and B is a 1local neighborhood of
cells which can be arbitrarily specified. In general, the five cell von
Neumann and the nine cell Moore neighbornoods of Fig. 5 are often used,
and the functional T can be any algebraic or Boolean expression. The
Kirsch operator described in Chapter II is an example of a cellular
logic operation. Before additional transformations are presented, a
brief review of pertinent historical and technical issues relating to
cellular logic operations and their mechanization is appropriate.

The ecarly works of von Neumann (Ref. 26) were centered around
theoretical cellular automata concepts such as machine self-
reproduction. His work is described and the early theoretical works of
other authors are compiled in a comprehensive set of essays edited by

Burks (Ref. 3). A summary of more recent theoretical efforts is
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provided in the IEEE Proceedings on Cellular Automata, and the work of
Rosenfeld and Dyer (Ref. 22) at the University of Maryland illustrates
one of the more unique constructs being investigated.

The mechanization of a two-dimensional spatially organized parallel
processor was described by Unger (Ref. 25) in 1958. Since then,
numerous special purpose parallel processors have been designed to
perform various pattern recognition and image processing functions.
While the University of Illinois ILLIAC IIXI (Ref. 14) and the CLIP (Ref.
6) machines designed at University College London appear to be the most
computationally powerful (Ref. 20), the Perkin-Elmer Corp. CELLSCAN
(Ref. 10) and GLOPR (Ref. 21) processors have enjoyed some success in
the commercial marketplace. The Environmental Institute of Michigan
(ERIM) is presently under contract with Harris Semiconductor through the
Air Force Avionics Laboratory to construct a large scale integrated
(LSI) ecircuit design of a programmable cellular 1logic stage which
promises to improve real time image processing capability. Throughout
this period of hardware development, many articles have been published
which describe useful geometrical and topological properties of cellular
logic operations. For example, McCormic (Ref. 14) and Golay (Ref. T)
established a foundation for both regular hexagonal and rectangular
tesselation organizations and Grey (Ref. 8) addressed cellular
connectivity, Euler number measurement, and perimeter estimates.
Several French authors have also been active in this field, and their
approach of describing neighborhood transformations as "hit or miss"
operators 1is unique as 1is their concept of structuring element

operations. Some of their more descriptive efforts have been translated

and published in the Journal of Microscopy (Ref. 11). In summary, the
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field of cellular logic processing has had a rich theoretical basis, and
a diverse number of investigators have actively participated in applying
cellular logic operations to image processing and pattern recognition
tasks. For a more detailed description of the theoretical aspects, the
bibliography by Nishio (Ref. 18) and article by Maruoka (Ref. 13) are
most recent. On the other hand, Preston, Duff, Levialdi, Norgren, and
Toriwaki (Ref. 20) provide a very complete summary of the more
applications oriented efforts in this field and include a very complete
(with the exception of the French authors mentioned above) 1list of
references.

The remainder of this chapter will describe specific neighborhood
transformations and sequences of transformations which will be wused
later in the design of a target classification processor. Emphasis 1is

placed on developing " and interpreting the geometrical relationships

P

associated with applying these operations to binary images in two and
three dimensions. The original tutorial instruction provided and

T 1llustrative examples (which permit the logical transition of
two-dimensional operations to binary three-dimensional operations) will
be most appreciated by anyone who has attempted to extract and combine
similar information from any of the above referenced sources.

, First to be described will be the dilation and erosion operations
which are the basic building block transformations. These two
operations are also referred to as expand and shrink functions, and the
aspecific geometrical operations they perform are often in agreement with
their descriptive names. Dilation and erosion have been used by Miller
(Ref. 15) to define a Boolean algebra which describes many cellular

(: logic functions. The closure and opening operations are then described.
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These cellular logic operators are constructed by simple sequences of

dilation and erosion transformations, and they perform interesting
geometrical bounding functions. While neighborhoods such as the von
Neuman and Moore are commonly used, certain less common neighborhoods
will be described which are wuseful for more complex transformations
which skeletonize images and erode ends of line segments. Finally, the
concept of binary cellular operations will be expanded to
three-dimensions (multigrey level data) where dilations, erosions,
closures and openingé are also quite useful. An additional sequence of
three-dimensional transformations which demonstrate properties similar
to a high pass filter when applied to three-dimensional surfaces is
described by Sternberg (Ref. 24) but is not used in the design of the
processor of Chapter IV. Suggested uses for these transformations are
discussed throughout the chapter, and emphasis is placed on describing
the capabilities and limitations of each in a cutorial manner. Specific
designs and applications will not be described until Chapter IV.
Ihe Basic Transformations

Before defining the dilatiorn and erosion transformations,
terminology common to neighborhood transformations will be reviewed.
The concept of a neighborhood simply refers to one or more spatially
related cells. However, a neighborhood (of cells) is always specified
with respect to a root gell. Figure 5 provides several examples of
neighborhoods, each with its root cell marked with a "+". A symmetrical
neighborhood is any neighborhood which remains unchanged when reflected
through its root cell. Therefore, neighborhoods By and B, of Fig, 5 are
unavgmetrical (note that By is the reflection of B, through its root

cell) and the remaining neighborhoods are symmetrical with respeoct to
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the specified root cells.

Quite often, neighborhood transformations are designed to perform
simple Boolean operations on binary images or binary surfaces (a binary
surface is multigrey level data which can be partitioned so that the
volume of cells on and below the surface are in state "1" and the volume
of cells above the surface are in state ™0%). In these cases, a
specified neighborhood can be considered a geometrical shape constructed
of state "1" cells (i.e. a gatructuring element) and the desired
transformation can be effected by simple binary additions and products
as the structuring element is appropriately positioned throughout the
image. Neighborhood transformations will be defined in terms of
structuring element operations whenever possible because they are easier
to describe (both conceptually and mathematically) and, as will be seen
shortly, the structuring element concept permits a direct meaﬁs of
tracking the geometrical interpretations associated with sequences of
dilations and erosions. The concepts of root cells and symmetry as
described for neighborhoods apply also to structuring elements. The
basic concepts of dilation and erosion will now be defined in terms of
structuring element operations. Since the relationships described in
the following sections have either been proven by Miller (Ref. 15) or
demonstrated by Matheron et.al. (Ref. 11), their definitions and
descriptions are graphically illustrated and comparatively discussed to
provide the reader an understanding of the operations and their
potential applications.

Dilation. The dilation operation as applied to the state "1" cells

of a binary image (matrix)




A= {ai,J} ' (3)

is defined as

Dy(4) = ZB(ai,J)'V'ai,J =1, a:l.,j“ (%)

where B(a1 J) is a structuring element (neighborhood of state "1" cells)
9

positioned with its root cell at the cell of the image and the

1,3
summation specifies binary addition. Stated geometrically, the dilation :

operation specifies the set of cells spatially covered by the

structuring element B(ai J) as it is positioned at each.state "1® cell
1

of the binary image A. Figure 6(a) illustrates a binary image (A) and

two structuring elements B, and B,. The dilation of the image (A) using

1 2

4 and B, is illustrated in Fig. 6(b) as Dy (4)
1

and DB(A) respectively. Note that the dilated images consist of the
2

the structuring elements B

original image (crosshatched in Fig. 6(b)) and those cells covered by ]
the respective structuring elements state "1" cells as the structuring
elements root cell is positioned at each state "1" cell in the original i
undilated _.mage.

The dilation operation has commutative and associative properties

(Ref. 15) such that

D (D (A)) = D_(D_.(A)}) (5)
B1 32 B2 B1
and
D.(D_(A)) = D_(A) (6)
B1 B2 83

where
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83 = DB$BZ) = .DB;B‘I) . (7)

Thus, a sequence of dilations can be implemented by a single operation
using the larger structuring element 83 of Eq. 7. Figure 6(c)
illustrates the sequence of dilating the image (A) first with B1 and
then with B, and the resulting image is labeled DB(ZDB(1A)). Figure 6(d)
then illustrates the structuring element B3 and the dilation of the
image (A) using this larger structuring element. The verification of
Eq. 5 proceeds in the same manner. The definition of dilation insures

that the dilated image will always be at least as large as the original

image so that
A < D(A) (8)

where the notation ® < " is read "contained in"™ and 1impliea that the
spatially positioned set of state "1® cells in the image (A) is a
spatial subset of the state "1" cells of D B (A) so that the binary

product
A. DB(A) = A (9)

holds true. The equality of Eq. 8 holds for the structuring element
which consists of only a root cell.

Dilation is a many to one mapping. Figure 7(a) conceptually
illustrates the domain and range relationship for dilation, and Fig.
7(b) provides an example of three images (4, Ag and A3), each of which
dilates to the same image DX The domain ( Q ) of dilation can be

bounded by specifying that it consist of the set of all possible events

(binary images) that may ococur on an N by N segment of a larger M by M
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matrix. It is also assumed that all the cells outside the N by N matrix

are in state "0" and that M is sufficiently larger than N so that any
dilations applied to an image in the domain would not create an image in
the range that could not be contained in the M by M matrix. Since each
event of the range is the image of one or more events in the domain, the
dilation operation is onto (surjective) and the domain can be
partitioned into sets of events, eacﬁ member of which, dilatéa to a

specific event in the range:

@"=1a:2€Q@ , Dya) = 0" ,0"€ D). (10)

Figure 8 provides a one-dimensional example of the domain and range
relationships associated with a four cell (Nz=4) portion of a larger
(M>4) bit stream. The 2” possible events in the domain ( (@ ) dilate to
one of five events in the range ( J” ) when the one-dimensional
structuring element B is used. Note that some, but not all, of the
events D€ ﬁ’ are also in @ and visa-versa. For example, the null
event in the domain (Ao) maps to the null event in the range (EP ), the
events A1 thru Aﬂ map (allowing translation) to the three cell event D‘,
and A.( maps to the four cell event Dz. As an example of a set Qm,
the events A12 ’ A13 s A.m , and A15 of Fig. 8 each dilate to the event

Dn of the range, thus

]
Q° = (&, Rizs Ay LI R (11)

It is obvious from the definition of dilation that the set of

events ( Q") will contain an image
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By = MAXL A€ Q™) (12)

which is as large as or larger (contains more state "1" cells) than the
other members of the set. Event A11 of Fig. 8 is an example of this
concept because, if another state 17 cell were added to A11 (or A10 ),
it would dilate to an image larger than D3. Thus, the event A:Ax is an
upper bound on the size of events that can dilate to the event " .
Image A3 of Fig. 7(b) is another example of an image which is the
largest event that can dilate to the event p* using the Moore
structuring element. It will be described later in this chapter that
the event A:Ax € (@m can be determined by applying an erosion operation
to the event D" € ,Cr. This and other relationships between dilation
and erosion as well as potential uses for dilation in image processing
will be explored in the following sections.

Erosion. The second commonly used neighborhood transformation is

the erosion operation. Erosion is defined in terms of the dilation

operation as

Eg(A) = (D (a°)° (13)

where Ac is the complement of the binary image A, and it is formed by
changing the state "1" cells in the image (A) to state "O" and state "O"
cells to atate "1". Figure 9 illuatrates a step by step implementation
of Eq. 13 as applied t:: the binary image labeled A and the structuring
element labeled B. The complement of the image R 1s first calculated

and then A° is dilated using the unsymmetrical structuring element B to

form the image labeled DB(A°). The erosion operation is then completed
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by taking the complement of DB(AQ) and the result is labeled EB(A).

An equivalent (Ref. 11) erosion structuring element operation is
= : B! = .
EB(A) {ai,,j (ai,J) £4, ay 4 1, ai,,jé A} (14)

Using this definition of erosion, one can readily verify that the
reflected structuring element (labeled B') in Fig. 9 can only be
contained in the image A at the same three positions earlier determined
to be the erosion of A. Stated more graphically, the erosion Eg (4) is
the set of positions at which the structuring element B' fits into the
state "1" cells of the binary image A. Figure 10(a) illustrates a
binary image labeled A and two structuring elements labeled By and Bz .
The erosion of the binary image (A) using By and By are illustrated in
Fig. 10(b) as Ess“) and EBéA) respectively. Note that these eroded
images consist only of the root cell positions at which the reflected
structuring element could be contained entirely within the .state ol b
cells of the image A.

Sequences of erosions do not generally exhibit the same properties
(Ref. 15) as dilations. However, as in dilations, the order in which a
sequence of erosions is performed does not influence the results of a

given erosion sequence applied to an image. Thus,

ER(E(W)) = Eg(Ex(N) - (15)

And, as with dilation, a single erosion can replace a sequence of

erosions such as

(E4(A)) = E_(A) (16)
EB1 B2 83
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B3 = DBsBz) = DB£B1)' (17

For example, Fig. 10(c) illustrates the sequence of eroding the image A
of Fig. 10(a) with structuring elements B1 and B2 sequentially, and the

resulting image is labeled E_(E_(A)). Figure 10(d) then illustrates

5 B

Eqs. 16 and 1T by first constructing the structuring element B3 by
dilating B2 with By (or equivalently dilating B4 with By ) and then
eroding the image A using this equivalent structuring element (B3 ).
Note that the reflected equivalent structuring element (Bé) fits in ;he
image (A) at only one position and that this position is the same cell
that remained following the sequence of erosions in Fig. 10(e). One
might also observe that the definition of erosion insures that the

eroded image will always be no larger than the uneroded image. Thus,
EB(A).S A, (18)

and the equality holds for the structuring element which consists of
only one cell, the root cell.

Erosion, as was dilation is also a many to one funct’on. Figure 1%
(a) conceptually illustrates the domain ( (R ) and range ( & )
relationships for erosion and Fig. 11(b) provides an example of three
images (A 4 , A, , A.3) each of which erodes to the image labeled E .
If the domain of erosion is defined as the set of all possible binary
events which can occur on a bounded matrix, then each event of the range
is the image of at least one event in the domain (the erosion operation

is onto), and the domain can be partitioned into sets of events that

erode to common events in the range:
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Fig. 11. The Many To One Mapping of Erosion
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n n
Figure 12 again illustrates the 16 events which may occur in the domain
of a one-dimensional four cell matrix and demonstrates the erosion of
these events using the structuring element B. In this case, the range

consists of only three events. The null event E. is the image of the

0
events in the set

@

E1 is the image of A1° and A11 , and E2 15

Referring once more to the definition of erosion (Eq. 14), observe

0 {Ai }1 is= 0:1720""8t9112913s1u ’ (20)

is the image of event A .
that a minimum sized image in the domain must exist for each event in
the range. For a given structuring element (B) and an event in the
range (Ene e ), this minimum event is specified by the set of cell;l
covered by the reflected structuring element as its root cell 1is
positioned at each state "1" cell in the range event En' Obviously, any
image which does not contain this minimum event cannot possibly erode to

event En using the structuring element B. Thus, this minimum event

MIN _ . -
Ay = LBay (e g By =) (21)
must be contained in each event A € an' Stated in terms of dilation

(note the similarity between Eq. 21 and Eq. %),

MIN
k" = Dg,(E) . (22)

For example, the event A_ of Fig. 11(b) is the smalleat event which can

3
erode to the event labeled Ex and that the dilation of Ex using the
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structuring element B' results in the image A . Finally, note that the

event A:Ax of Eq. 12 can be specified by

Moax = Ep(®) (23)
for an event D® in the range of dilation and structuring element B. The
relationships of Eqs. 22 and 23 are baaic to understanding the closure
and opening operations which are described later in this chapter.
However, as an ald to better understanding the dilation and erosion
operations, a brief discussion concerning their use in measuring
geometrical shapes will first be provided.

Annliga&igna,1n'§hang‘ugaayzgmgn1; A sequence of one or more
dilations will generally not be useful in shape discrimination unless
applied in conjunction with one or more erosions: One exception to this
observation is that dilations may be used to digitally construect
geometrical shapes which can then be used as decision templates.
Erosions, on the other hand, can be directly used to measure the
geometrical size and shape of binary images.

Consider the image A of Fig. 13(a) and assume that our goal is to
measure (1i.e. geometrically describe in some sense) this image. Using
the structuring elements B, and B_ of Fig. 13(a), a sequence of two

1 2

erosions using structuring element B, followed by a single erosion using

1
structuring element 32 erodes image A to the four cell image labeled EBx
(A). Recalling the definition of erosion (Eq. 14) and its associative
properties (Eq. 16 and 17), the image EB(A) describes the four positions
at which the equivalent structuring elen:nt (B;) of Fig. 13(b) fits into
the image A. (Note that for symmetrical structuring elements, B = B!'.)

If, instead, the image A were eroded twice using structuring elements B1

39
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and twice again using B

the resulting image would be the null set (no

27
state "1" cells) because the equivalent structuring element for this
sequence of erosions, labeled By in Fig. 13(b), cannot fit into the
image A at any position. Thus, one might conclude that the structuring
element Bx was smaller than the image A and that Bx could fit into the
image A at four positions but that the structuring element By was too
large to fit into the same image. In other words, we have determined
that the image A was larger than the structuring element Bx and smaller
than the structuring element By . Unfortunately, this knowledge does
not totally characterize the image.

It should be quite apparent that the use of erosion sequences to
extract shape information from an image is highly dependent upon the
shapes of the structuring elements selected and that the dinformation
extracted by an erosion sequence describes only a 1limited amount of
information about the image. A useful analogy can be made -between
describing geometrical shapes by erosion sequences and the description
of a random variable by its central moments. In general, to completely
characterize a random variable, an infinite number of its moments are
required. Likewise, an infinite number of erosion sequences, each
specifying a unique set of structuring elements, will generally be
needed to completely characterize a geometrical shape. Each unique
erosion sequence would provide some shape-conditional information
pertaining to the image eroded. In a limited number of situations (for
example, where very little information is known about the oclasses of
objects), the use of arbitrary and/or random (Ref. 2i) erosion sequences

may well be a viable technique to obtain features for unsupervised

clustering tasks. However, when a priori information oconcerning the
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geometrical characteristics of the targets, clutter and noise is
available, there is little need for a "“black art" erosion sequence
selection proceass. Specifically, a large portion of Chapter IV will
describe how to carefully select structuring element erosion sequences
based upon a priori knowledge of the random and nonrandom information an
image may contain. This, when combined with an awareness of the 1limits
associated with geometrical measures such as erosion sequence image
characterization, will provide several useful insights and techniques
applicable to the algorithm selection process of cellular logic shape
classification processors in general. The following section describes
how combinations of erosions and dilations can be used for removing
geometrical distortions and noise from binary images.
JIwo-Dimensional Clesurg and Opening

As described earlier, the dilation operation generally increases
the size of objects (sets of state "1" cells) in binary images and, as a
result, may not be as wuseful for image characterization as erosion
sequences which erode (extract) information from an image. However, the
erosion sequence will be shown to be quite sensitive to additive noise
which may exist either as holes (state 0" cells interior to a group of
state "1" cells) or concavities (one or more state "0" ocells which
protrude into the edge of a state "1™ object) in the image. As a means
of clarifying these noise descriptive terms (i.e. holes, concavities,
and convexities), an analogy can be made to the geographical entities of
a continent (an object of state "1" cells) which is surrounded by an

ocean (field of state "0 cells). Continuing the analogy, & hole (a set

of state "0" cells) in an object is analogous to a lake interior to the

continent, a concavity would be analogous to an inlet or bay of state




(.

"0" cells, and a convexity would be analogous to a peninsula of state
"1® cells extending into the ocean of state "0" cells. The remainder of
this section will describe the two-dimensional operations of closure and
opening and to evaluate their potential for removing holes, concavities,
and convexities from noise corrupted images.

Individually, erosion and dilation each exhibit some noise removal
properties but in doing so, distort the image. The operations of
opening and closure are an attempt to exploit the noise removal
properties of the erosion and dilation operations. For example, Fig.
14(a) provides a noise free image labeled (H), two symmetrical
structuring elements, and a noise corrupted version of the image (RH)
which 1is labeled (A) and exhibits noise in the form of holes,
concavities, and convexities. Figure 14(b) illustrates the erosion of
the noise corrupted image (A) of Fig. 14(a) using the structuring

element B The shaded cells in these illustrations indicate the cells

7"
which were in state "1" prior to the indicated operation. Note that the
eroded image EBﬁA) consists of only the three positions at which the
structuring element 31 could fit inside the image (A). Thus, one might
conclude that the erosion operation removed the convexities and reduced
the scale of the object. On the other hand, Fig. 14(¢) illustrates that
the dilation of the image (A) using the same structuring element filled
in the hole and a concavity but in general left the convexities intact
and increased the scale of the object. In an attempt to use the noise
removal features of both dilation and erosion without changing the scale
of the image, simple sequences of dilations and erosions have been

applied (Ref. 11) to noisy images to remove (filter) the geometrical

distortions caused by noise. In particular, an erosion followed by a
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dilation using the symmetrical structuring element B is defined as the

onening of the image (A) with respect to the structuring element B,

Ay = DB, (R)). (28)

Likewise, the closure of the image (A) with respect to the structuring

element B is defined as

o .
K" = Eg(D, (M) (25)

Each of these noise filters will be illustrated and discussed and
observations will be made concerning their utility.

The opening of the image (A) using the structuring element B; of
Fig. 14(a) is illustrated in Fig. 14(c) and labeled AB1. This result
was obtained by dilating the state ®1" cells of the image in Fig. 14(Db).
Note that the opening AB1 is smaller than the original noise free image
labeled H. Thus, due to the hole and concavities introduced by the
noise, the opening of the noisy image resulted in an image which 1is
significantly reduced in scale. To 1illustrate that the opening
operation is sensitive to the geometry of the selected structuring
element, observe that the erosion of (A) using the structuring element
BE is the null set because BE could not fit into the noisy image. Thus,
the dilation of the eroded image Eégk) (1i.e. the opening ABZ ) is also
the null set. The reader should observe that the erosion of the noise
free image H using either structuring element (B1 or Bz) results in a
square four cell image and that the opening of H using the B,
structuring element results in an image equal to H. An image which

exhibits the property
AB=A (26)
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is said to be smooth with respect to opening by the structuring element
B.

The application of closure operations to the noise corrupted image
(A) of Fig. 14(a) is illustrated in Fig. 15. The noise free image H,
the symmetrical structuring elements By and B, , and the noisy image ()
are repeated in Fig. 15(a), and Fig. 15(b) illustrates the closure of
(A) using the structuring element B, . Note that the initial dilation
operation has filled in the hole and the other missing state "1" cells
but has increased the scale of the image. Therefore, the erosion of
this dilated image (i.e. the closure A ! ) is relatively similar to the
original noise free image with the exception of the noise related
convexities. For comparison purposes, the dilation and closure of the

image (A) using the larger structuring element B, is illustrated in Fig.

2
15(c). Observe that in this example, the images AB’ and ABZ are
identical except that the two noise related convexities on the left side
of the image have been joined (the concavity formed between the two
noise convexities has been filled in) by closure using the larger
structuring element Bz. In a similar manner, the closure of the noise

free image H results in an image equal to M for either the 81 or 82
structuring elements. Therefore, the image H is smooth under closure

with respect to either structuring element because

HBSH . (27)

Recalling how Eq. 14 provided an alternative method of evaluating the

erosion operation of Eq. 13, there are alternate methods of evaluating

the opening and closure definitions of Eqs. 24 and 25. For example, an
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equivalent description of opening is
- ]
A = ZB'(ai’J) ¥ Bray P (28)

Thus, the opening operation describes the set of cells spatially covered
by the structuring "element B' as it is translated vertically and
horizontally interior to and contained in the state "1" cells of the
image. Likewise, the closure operation can be described as the set of
cells covered by the structuring element B as it 1is translated
vertically and horizontally interior to and contained in the complement

of the image. Thus,

A8 - YB(a, ) W B(s; ) €% (29)

Stated in terms of the uncomplemented image, closure is the set of cells
not covered by the structuring element B as its root cell is positioned
on every state "0" cell at which the structuring element does not
intersect a state "1™ cell of the image. The reader should compare
these descriptions of opening and closure to the examples given in Figs.
14 and 15 and in particular observe that the only difference between AP1
and ABZ in Fig. 15 was the result of the ability of the von Neumann
structuring element to fit into the concavity formed between the
convexities on the left side of the noisy image (A) and the inability of
the larger Moore structuring element (Bz)to perform the same task as the
root cell of each structuring element was positioned on state "0" cells
of the image.

Before directing the reader's attention to other classes of
cellular logic operations, Fig. 16 provides a graphical description of

the geometrical size relationships associated with the images formed by
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the opening and closure operations. The set of events (binary images)
in the domain is labeled (R and 1is positioned between the opening
operation on the left and the closure operation on the right. For
simplicity of illustration, the 1larger indices imply larger binary
images: the smallest image being the null image Ab and the largest
image being an all state "1" image labeled An. As the first step of the
opening operation, the erosion of each event in the set of events(lusing
the structuring element B' results in the set of eroded images la-
beled e'. Recalling earlier discussions, within each set of events Cln
that erode to an event En€ e » there exists an event A’;I}t@n which is
the smallest event that can erode to the event En . Exploiting the size
ordering assumed for the events A € (l, the null set (Ao ) 1is the

smallest image that will erode to the null set Eo (i.e. Ao = AgIN), the

event Au is the smallest image that will erode to E1 (i.e. AM = A?IN),

etc. The opening operation is then completed by dilating each event E€$
with the structuring element B. Referring to the definition of dilation

(Eq. 4), it is apparent that the dilation of each event En€ e using the

structuring element B will reconstruct the minimum event A:IN . There-
fore, the opening of an image,
Ay = Dg(Eg, (A)) , (30)

specifies (constructs) the smallest image that can erode to the erosion

of the event (A). Thus,

MIN
AB = An = MIN[Ajean ] (31)
where
o= (Ay 3 E(A) = E ,AJGQI. (32) |
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Using similar observations, the closure AB

of an image,

B

A = Eg(Dg,(8)) , (33)

constructs the largest event (A:Ax ) which can dilate to the dilation of
the image (A). Therefore,

B m m

A = Ay, = MAX [AJEQ]
where

m- »
Q" - {a; : DA,

While the relevance of these relationships may not be readily apparent,

) = D, 1AEQ . (34)

they do provide some useful bounds on the many to one mappings
associated with opening and closure operations. In particular, it has

been shcwn (Ref. 15) that

ABsA_{AB. (35)

In 2 more philosophical vein, frequent referral to Fig. 16 will be
helpful in understanding the design and selection of two and three
dimensional noise filters in the following chapter.

In summary, the closure and opening operations each have their
unique capabilities and weaknesses, and the best operation to use for a
given application will depend upon the type of noise one might expest to
encounter (holes, concavities or convexities) and the operations which
will follow the noise filter. For example, if some form of imagery was
much less susceptible to holes and concavities than convexities, then
the opening noise filter may be most appropriate. If, however, the data
were equally susceptible to all three forms of noise, then the closure

noise filter may be most useful since it generally removes two of the
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three noise types. And, if immediately following the noise filter a

series of erosions were used for shape or size discrimination (as {is
commonly implemented), then closure would generally be the moat
advantageous since, following the closure operation, any remaining
convexities would be removed by the subsequent erosion sequence.
Additional relationships concerning opening and closure operations are
discussed in the next chapter but, as is always the case, the selection
of an appropriate noise filter must be based on the physics of the
problem (and solution) at hand. The following section describes special
purpose two-dimensional cellular logic operations which will be used in
the processor design of Chapter IV.
Iwo Special Purpose Iransformations

The previous sections have described the two most common cellular
logic operations (dilation and erosion) and two simple sequences of
these operations (opening and closure). The definitions of these
operations have been in terms of structuring elements as applied to
binary images. This section will describe two additional
transformations which apply multiple nonsymmetrical erosion sequences to
images. While these transformations could be described in terms of
complex sequences of structuring element operations, these operations
are most descriptively defined in terms of neighborhoods and transition
functions. Potential uses for the medial axis transformation (MAT) and
the end erode operation (EERO) will be described, but specific
applications will not be addressed until Chapter IV.

JIhe Medial Axis Transformation. The medial axis transformation was
first proposed by Blum (Ref. 1) as a feature extraction technique and

many methods of its implementation are cited in Ref. 20. The medial




axis transformation will in general operate on an image to form a

skeleton of that image: each point or cell of that skeleton being
internal to the image and equally distant from the edges of the image.
Thus the medial axis transformation is often referred to as a central
axis transformation or a skeletonizing operation. Figure 17(a) defines
the medial axis transformation used in this study, and Fig. 17(b)
illustrates typical skeletons which are formed by the application of
this MAT to three binary images. The state "0"™ cells represent the
locations at which a state "1% cell has been changed to state "0" by the
MAT and the remaining skeletons are indicated by a "1", Note that the
skeletons are connected, are only one cell thick, and may contain one or
more branches. Historlically, skeletonizing operations have been used as
a method of measuring an object's size or to normalize some uncontrolled
variable of an image such as the variations of line widths in printed
letters. More recently (Ref. 15) the MAT has been proposed as a data
compression technique. In the following chapter, the MAT will be used
in conjunction with an end erosion operation to extract additional shape
information from images once a basic size discrimination process has
been completed.

The End Erosion Operation (EERO). The end erosion operation is
designed to detect cells of an image which aice either 1solated or
connected to only one other cell and to remove (erode) these cells from
the image. In general, the EERO is applied aa a noise removal technique
or as a method of detecting the ends of line segments (Ref. 3). The
EERO operation is defined in Fig. 18(a) and its application is
illustrated in Fig. 18(b) as applied three times to the skeletons of

Pig. 17(b). 1In Fig. 18(b), the state "1" cells of the skeleton which
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{ TRANSITION FUNCTION # 1 i
’ - .

9
X[X Y Y] | XX
X[Z2]Y IHAR EET Y[2[£
Y X[X XX Y
N, N, N3 Ny,

Change the state of cell 4 from state "1" to state "O"
if its neighbors labeled X are in state "0" and its
neighbors labeled Y are in state “1", OUtherwise,
the state of cell 4 remains unchanged,

TRANSITION FUNCTION # 2

Y L1 X]X X X
4 4 Xl4lY 14| X
] Xl X{X I X A
NS N6 N7 Na

Change the state of cell Z from state "1" to state “O"
if its neighbors labeled X are in state “1" and its
neighbor labeled Y is in state "0", Otherwise,
the state of cell 4 remains unchanged,

APPLICATION

(1) Apply transition funotion # 1 to each cell of the matrix
T using neighborhoods N N, and N, sequentially until
the transitions withid th% mafrix have stabilized,

(11) Apply transition function # 2 to each cell of the matrix
using neighborhoods N and “8 sequentially until
- the transitions withid' thé maZrix have stabilized,

(111) depeat (1) and (11) until both sequences are stable,

(a)
01 1
b 000010000 010 00001
000010000 00100 0111111
111111111 11111 0011000
000010000 00100 00111000
000010000 010 {11000
010
(v)

e

Fig. 17. The redial Axis Transformation (MaAT)
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For the neighborhood configuration,

Qo>

E1GICI
[ k) (£

each state "1" cell of an image wlll be changed from
state "1" to state "0" if it and the states of its eight
nearest neighbors satisfy one or more of the following
neighborhood state configurations.

“"‘Ig.*;ﬁgﬁ““‘“’ NEIGHBOR STATE

conFIGUAaTION | a | 3 | cl ol el Flcelal:
1 ololoJolt]loJololo
2 olol#|o|r]# ool
3 ololololtlo|#|#|#
4 #lolo|#|1]lol#]o]fo
S #l#|#|oltlololo]o

* Neilghbors which indicate state "#" can be in sither

state "1" or state "0",

fiowever, simple checks are

made on these cells for each state configuration to
insure that connectivity within sets of state “1"

cells is retained,

(a)
o8
0000B00O00O ObO 0000&
Q00020000 0000 001111kbks
a8 n111EEL ELbksso 0011000
00000000 0000 00111000
000080000 OO0 EBEOQ0O0O
080
(v)
Fig. 18, The Bnd arode Transformation (abRO)
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were eroded (nibbled away) by the EERO are indicated by the letter "E".
The end erosion operation can be used for several additional
purposes such as counting the number of cells in a 1line segment,
removing line segments from an image which are shorter than an arbitrary
number of cells in length, or to effect the separation of long single
branch line segments from line segments which exhibit multiple branches.
It is this latter task for which the EERO will be exploited in the
following chapter. However, before proceding to Chapter IV, the
concepts of two-dimensional cellular logic operations will be extended
to three-dimensions.
Ihree-Pigenaional Cellular Logic Operations.
The use of local spatial operations in three or more dimensions was

documented by Unger (Ref. 25) in 1958. As described in Chapter II, the

third dimension can represent intensity, range, height, or some other

measure of information, and cellular logic operations can be readily
applied to any of these types of data. Additionally, each
two-dimensional concept or operation described in this chapter has an
equivalent three-dimensional counterpart. For example, the concept of a
structuring element extends to a three-dimensional set of neighboring
cubes which describe a structuring volume with respect to a root cell.
Likewise, while in two-dimensional binary space the state "1" cells are
partitioned from the state "0" cells by their edge boundary, in
multigrey level data, the surface described by the grey levels
partitions three space into volume sets of cubic cells above and below
the surface. Also, oonveniently, the edge characteristics of
concavities and convexities extend directly to surface characteristics

of depressions (valleys) and protrusions (mountains). Holes, as used
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with respect to two-dimensional data, do not exist in single value

multigrey level data. If notation is established so that the ocubes
below the&grey level surface are in state "1 and those above the
surface are in state "0", binary volumes are established and a direct
comparison can be made between binary two-dimensional cellular logic
operations and their multigrey 1level counterparts. For example,
two-dimensional binary erosion was earlier described as the root cell
positions at which a two-dimensiomal structuring element could be
contained in (i.e. fit into) an object/area of state ®1" cells. In
multigrey level data, a comparable binary erosion operation would
specify the root cell positions (in three space) at which a
three~dimensional geometric solid (i.e. a three-dimensional structuring
element) could be contained in the state "1" cells of the binary volume
below the surface. Thus, if a three-dimensional structuring element is
of an 1indexed

defined as B(a ) when positioned at cell a

i3,k 1,3,k
volume (A), then three-dimensional erosion is defined as

Ep(A) = (ay , ¢ B8y () <A, a =1, 8, €4} (36)

where, as before, the symbol "<" prequires that the three-dimensional
structuring element B' be contained entirely within the volume of state
1" cells (i.e. does not protrude above the surface). Likewise, the
dilation of the binary volume (A) with the structuring element B is the
volume of cells spatially covered by the 3-D structuring element as its
root cell is positioned at each state "1®" cell in three-space.

Therefore,

Dp(A) = L Blay o )i ey o =1, 8 €A, (31




While in two-space, erosion generally removed convexities from edges and
made concavities larger; in multigrey level data, ..ie erosion operation
will remove mountains from the surface and make valleys deeper and
wider. Similarly, in binary two-space, dilation generally filled in
edge concavities and exaggerated convexities, whereas in multigrey level
data the dilation operation will f£ill in valleys and exaggerate
mountains. Thus, conceptually, the three-dimensional operafions of
erosion and dilation perform noise filtering tasks quite similar to
their binary two-dimensional counterparts.

As with two-dimensional operations, sequences of three-dimensional
erosions or dilations generate larger equivalent three-dimensional
structuring elements, and three-dimensional <closure and opening
operations perform similar noise removal tasks on three-dimensional
surfaces., Figure 19 illustrates the application of a three-dimensional
closure operation to a surface in three-space. Figure 19{a) illustrates
a vertical slice (possibly a scanned line) of multigrey level data which
contains both convexities and concavities. The closure operation using
a cubic (3x3x3) structuring element is applied to the slice of data of
Fig. 19(a) and the resulting slice is illustrated in Fig. 19(b). The
dashed lines of Fig. 19(b) 1illustrate the results of the dilation
portion of the three-dimensional closure operation. Note that the
dilation operation has vertically biased the surface (slice) by the
thickness of the 3-D structuring element (one cell), has removed the
concavities which were smaller than the three cell width of the 3-D
structuring element, and has thickened (exaggerated) both the large and
small convexities. Following the subsequent erosion operation, the

solid line of Fig. 19(b) 4llustrates the completed three-dimensional
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closure of the scan line in which the bia. has been removed, the

‘. convexities have been returned to their origiunrl (_re dilation) size,
= and the large concavities (the concavities withian which the 3-D
structuring element could fit into) remain unchanged. Figure 19(c)

» illustrates the results of applying a  three-dimensional opening

& operation to the scan line of data in Fig. 19(a). The dashed line
indicates the results of the intermediate (erosion) step, the solid line
indicates the completed opening, and the dotted 1lines the convexity

b removed by the opening operation. In addition to closure and opening, a 5

third cellular logic operation is often considered for noise removal in

multigrey level data. This filter is a 1local averaging function in

which each cell's grey level is added to those of its eight nearest

neighbors and the average value of this sum is the new value for the

central cell. Figure 20(a) defines this local average noise filter, and

(\ . Fig. 20(c) illustrates the results of applying this to the scan 1line

slice of data illustrated in Fig. 20(b). The 3-D closure filter offers

. an advantage over the local average 3-D filter in that it has the

potential to completely remove thin lines of correlated noise which is

«§ o often experienced in real world line scanning sensors. Figure 21(a)
illustrates a hypothetical example of a flat surface which, when

scanned, exhibited a missing or badly bilased line of data. Figure 21(b)

‘ ’ illustrates the data of Fig. 21(a) following a local averaging noise
; filter. Note that the depression was smoothed somewhat but that the

line of noise still remains obvious. Figure 21(c) provides the results

of applying a 3-D closure operation to the data of Fig. 21(a) using a

oubic (3x3x3) structuring element. While the 3-D closure operation

totally removed the single line of noise, one must be cautious to select




( The local average function, A= AVG(A), as applied to
the 1,j th cell of a two-dimensional array, A -{ai j} ,
' is defined as '

- 1
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where Z specifies arithmetic addition,
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Fig. 20, The Local Average Function
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a noise filter (and the corresponding structuring element) that does not
remove or significantly distort small convexities or oconcavities which
are necessary to the target identification task. In general, the
structuring element (or equivalent structuring element) must be smaller
than the smallest concavity or convexity cne desires to retain as viable
information in the data (surface or edge). This subject will bde
discussed at greater length with respect to the specific features and
targets selected in the next chapter. As stated before, the physics of
the random and nonrandom nature of the data and features must be
understood 1in order to intelligently select a reasonable
three~dimensional noise filter.

This completes the description of the two-dimensional and
three-dimensional cellular logic operations which will be considered for
use in the shape classification processor of Chapter IV, As described
earlier, the emphasis of this chapter was to convey a geometrical
understanding of several basic cellular 1logic operations and not to
dwell on proofs or demonstrations which are generally straight forward
and can be found in several sources (Ref. 1,8,11,15). Only "armed™ with
an understanding of the operations and their geometrical interpretations

will the essence of the following become apparent.,
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IV. Ihe Processor Design

This chapter provides a detailed description of how a cellular
logic processor may be 'designed to perform an autonomous target
classification task. Specifically, three hypothetical tactical targets
are described, and these targets are assumed to be scanned on a flat
surface by a nadir viewing range measuring sensor. Peatures which
measure the true geometrical shape information contained in the
three-dimensional (3-D) data are then selected, and noise and
geometrical distortions associated with these features 4inspire the
choice of noise filters. A unique design procedure 1s then developed
that enables the designer to select, in a "cookbook"™ manner, the
sequence of neighborhood transformations which will satisfy a specific
set of performance goals. An overall design of the target
classification algorithm is then developed and the false alarm rate
associated with this processor design approach is discussed.

Ihe Deaign Aporoach

A review of the literature (see Chapter II) clearly confirms that
optimization techniques which rely on modeling input-output
relationships and noise sources and applying analytical cost functionals
have not been successfully applied to neighborhood transformation
processors. While some progress has been made in constructing modeling
tools for neighborhood transformation (Ref. 15) and statistically
bounding simple geometrical properties of some specific transformations
(Ref. 9), the nonlinear nature of these transformations and the

difficulty in defining the signal (i.e. what is "patterness") in a form

suitable for analytical modeling have limited the application of
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classical optimization techniques to pattern classification tasks.

Recognizing theée difficulties, but not being satisfied with a
totally ad hoe design approach, an original systematic search technique
of algorithm optimization is proposed. This technique negates the need
to model the neighborhood transformations by applying a systematic
search through all sequences of neighborhood transformations that could
support a specific feature measurement requirement and evaluating each
sequence's effectiveness via a unique performance oriented evaluation
criteria. The characteristics of performance which form the basis for
the proposed evaluation criteria are the probability of detection (Pd H
the probability of properly classifying a target), the probability of
false alarm (Pfa; the probability of improperly classifying a nontarget
object as a target), the probability of misclassification (Ppe 3 the
probability of assigning a target to the wrong target c¢lass}, and the
probability of miss (Pm; the probability of not detecting a given
target). Thus, while the selection of features and feature
extraction/measurement approach can be considered ad hoc (even though
well justified in a scenario, resolution, and geometrical sense), the
algorithm selection process 1s a rigorous sequence of step-by-step
procedures which can be applied as an algorithm optimization technique
to many feature - feature measurement pattern recognition tasks.

The design approach implemented can be summarized by the following
sequenne of design steps.

a. Select two distinctive features which are common to each target
class.

b. Develop a generic approach to extract and measure these

features that can be implemented by neighborhood transformations.
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¢. Using Monte Carlo simulations to accommodate geometric
f {\ variables, systematically apply all neighborhood transformations (that
- could reasonably implement the feature measurement approach) to

digitally synthesized noise free targets.

d. Develop a unique evaluation criteria which directly relates
neighborhood transformation effectiveness to the performance goals of
high Pd and low Pra and Pm.

e. Determine which sequence of neighborhood transformations best
satisfies the feature measurement task by applying the evaluation
criteria to the results of the neighborhood transformation search.

f. Apply a likelihood ratio test to the feature-class conditional

probability density functions (obtained from the Monte Carlo simulation
of c. above) to partition the feature space into accept-reject regions
for each feature and target class.

&. Define a strict class decision criteria which supports Ilow Pmc

and an alternate criteria which improves Pd by accommodating

similarities of features between target classes. While not an integral
part of the design procedure, three promising noise filters were
evaluated for their deterministic distortive effects on geometrical
objects and their ability to remove/smooth additive noise.

Finally, as in classical signal detection and estimation, the
design goals of high Pd and low error rates are antagonistic. Thus,
there were several instances during the design process that required a
design decision that would support only one of the two goals. When such
a conflict arose, the design approach most conducive to low false alarm
rate was generally selected. This decision was based upon the fact that

( : the lack of an acocurate clutter (nontarget object) model prohibits a




realistic evaluation of the design's false alarm rate. Therefore, only
by biasing the design toward a low false alarm rate could a bound on the
processor's error performance be established. For design purposes, it
was assumed that clutter was uniformly distributed over the features
selected (i.e. over the feature space). In summary, this conservative
design approach will provide a well understood baseline design against
which future design decisions can be based. However, before describing
the processor design, the scenario and other assumptions associated with
the targets, environment, scanner, and noise will first be presented.
One must be cautioned not to assume that the selection of appropriate
noise filters, Cfeatures, or feature extraction techniques are
independent procedures as the chapter outline may hint. The various
design decisions are closely related, not only to the extent that they
influence each other, but also in that they are target, noise, and
scenario dependent. Throughout the following sections this
inter-relatedness will be described in detail; for herein lies much of
the "learning curve® associated with cellular logic processor algorithm
design.

Ihe Scenario and Assumptions

This section will describe the scenario and assumptions associated
with the targets, sensor, the environment, and noise.

Ihe Iargefs. The targets are hypothetical and proportioned, as
illustrated in Fig. 22, to represent three classes of tactical vehicles
such as tanks or armored personnel carriers., The base of each vehicle
model is composed of a rectangular shoe~box shaped object and the tops

are modeled as horizontally truncated cones, the aides of which form 60

degree angles with the horizontal plane. The length, width, and height
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of the bases and the height and base diameter of the tops are parameters
which vary between target classes. The units of length associated with
these target models can be described as "cell diameters™ which are
directly related to the altitude and instantaneous field of view (i.e.
the spatial resolution) of the sensor.

The Sensor. The sensor is assumed to be an active range measuring
device which unambiguously estimates vertical distance. Figure 23
illustrates the geometries of a line scanning sensor which is designed
to collect a two-dimensional matrix (image) of range data. The sensor
platform is translated in the y direction at a constant velocity normal
to the direction of scan (the x direction) without over or under
sampling. An ideal spot model is assumed where each range meaaurement
provides the vertical (nadir) range as measured from the sensor to the
center of its instantaneous field of view on the earth's surface. While
the assumption that each range measurement provides information from a
nadir viewpoint is not physically realizable, it is a very good
approximation to range data which is collected within a few degrees of
vertical where shadowing will not be prevelant in the range
measurements. Thus, the multigrey level range measurements are made
available to the target classification processor as the third dimension
of a regular rectangular tesselation.

JThe Enviropment. The terrain, upon which the targets shall be
randomly positioned and over which the scanner shall (conceptually)
pass, is assumed flat. "While this assumption (of flat terrain) is in
general unrealistic, it was felt that presentation of the target models
on randomly oriented surfaces would interfere with exploring more basic

sensitivities to parametea such as noise, platform instabilities, and
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AREA SCANNED IN ONE SWEEP OF THE LASER SCANNER

Fig. 23. Conceptual Line Scanning Scenario
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scale variations. Atmospheric anomalies such as fog, rain, snow, smoke,
cloud attenuation, and scattering are not specifically modeled.
However, since the noise model described in the following section was
obtained by observing the randomness of real data, at least some
uncalibrated amount of atmospheric noise/attenuation has Dbeen
accommodated in the 3-D noise model.

The 3=D Noise Model. A brief analysis of two sources of
three-dimensional infrared range data was used as a basis for the 3-D
noise model to be described as normally distributed and white
(independent) in time/space. The data samples (each sample consisted of
about 400 data points) were all observed to be unimodally distributed,
but the normality of these distributions (as measured by a Chi Square
test) varied widely between the data samples. Additionally, the
normality of the sample distributions varied inversely with the
reflectivity of the various surfaces. These observations may be more an
analysis limitation than a scientific observation because the higher
reflective surfaces will generally provide improved range estimates and,
since the truth model of the terrain was not exact, the samples which
had nongaussian distributions could quite possibly be due to accurate
measurements of nongaussian terrain surfaces. There was also a tendency
for the data to be correlated for a distance of one or two cells in the
direction of scan (the x direction) and uncorrelated between scan lines
(the y direction). This was not unexpected since, in line scanning
sensors, the time between line samples is typically much longer than the
cell-to~cell sample times within a scan line of data. Thus, since the
data exhidbited an obvions unimodel tendency and was definitely normally

distributed in severa. samples, a Gauassian noise model N(O, oc?2) was
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adopted. The white nature of the noise was initially chosen to be the

} worse case (uncorrelated vs correlated noise) and was later verified to
be so during Monte Carlo simulations. The 3-D noise model does not
incorporate clutter or other nontarget objects because insufficient data
were availale to aid in the design of such a model. However, an
arbitrary weasure of false alarm rate is applied to the processor as
part of the Chapter V performance analysis.

In summary, the scenario consists of an airborn nadir viewing range
measuring sensor which is propelled at a constant velocity over a flat
terrain surface upon which randomly translated and rotated targets are
positioned. The format of the collected 3-D range data is
three-dimensional in that the third dimension grey levels provide a
discrete topographical description of the flat terrain and target. The
next section will now describe the architecture of the proposed
processor.

Ihe Processor Architecture

The cellular logic processor will consist of six parallel branches.
Each branch is designed to measure incoming 3~D data for the existence
of a specific geometrical feature associated with one of the three
targets. Figure 24(a) illustrates the generic operations performed in a
typical branch, and the design and purpose of each operation will be
described in detail later in this chapter. Note that the operations of
Fig. 24(a) have been grouped into three functional areas; noise
filtering, feature extraction, and the decision criteria. Using these
three functional areas, Fig. 24(b) illustrates how six branches are

combined to form the processor. While this description implies that all

(T'\ the 3-D data is operated on by all six branches and that the operations
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within each branch are serially implemented, the actual physical
mechanization of a cellular logic processor may not necessarily follow
this approach. However, the parallel-serial architeoture of Fig. 24(b)
does accurately portray the functional design and, for clarity of
presentation, was the approach selected for implementation on a general
purpose digital computer (CDC 6600).

Feature Selection

Two features will be described for each target class. Since the

information content of the described data is unique in that it is truly
three-dimensional, the features are specifically selected to measure

three-dimensional target shape information.

Figure 25(a) illustrates a sample of a class 3 target scanned and J
digitized in 3-D range data format. Rather than selecting gradient or
texture features as is commonly done with passive data, a more ancient
and simple technique of thresholding (not currently in favor with the
image processing community because of the diurnal variations evident in
passively collected imagery) will be used. The 3-D image of Fig. 25(a),
for example, would be thresholded at two levels; once at one-hal” the
height of the base, and a second time at one-half the height of the top
above the base. The thresholding operation is defined so that cells 1in
the threshold plane are assigned state "1® if the center of the cell
lies above the plane and state ®0" otherwise. The results of
thresholding the top and base of a randomly positioned class 3 target is
illustrated in Fig. 25(b). The geometrical distortions exhibited by the ﬁ
digitized and thresholded binary images are commonly referred to as
digitization noise and, because digitization noise asignificantly

influences the thresholded binary images, any proposed shape
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Fig. 25. A Digitized and Thresholded Class 3 Target
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classification algorithm must be relatively insensitive to this noise
source. Using the thresholds as defined above, the two resulting
features (2-D binary images) provide a three-dimensional measure of the
targets or any other objects on the terrain. This measure, of course,
does not totally characterize the geometrical shape of an object, and
very little imagination is required to describe nontarget objects which,
when thresholded, provide similar 2-D binary images. Ideally, however,
very few nontarget objects would match both binary images at the
thresholds selected for the class 3 targets. While it is possible
to more completely characterize three-dimensional objects by using
additional height thresholds, additional features such as corners,
edges, and curves, or using three~dimensional geometrical volume
measurements (similar . the 2-D binary image area measurements
described in the previous chapter), the decision was made to fully
exploit the unique qualities of actively collected three~dimensional
range data by limiting the number of features to two and keeping the
features extremely simple.

Additional forms of geometrical distortions and noise which are
typical to this form of imagery data will next be described and
appropriate noise filters proposed and discussed. One potential
distortion is introduced by the noise filters themselves (much as a low
pass filter smooths off rising and falling edges). Thus, the 3-D and 2-D
noise filters must be specified and their deterministic effects on the
selected features evaluated prior to feature extraction/measurement
algorithm selection.

Jhe Noise Filter

This seotion will discuss the selection of the 3-D oclosure
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operation (vs local average or 3-D opening operations) as the noise
filter and describe how the choice of an appropriate 3-D structuring
element for use in the 3-D dilation-erosion (closure) sequence ia
related to the size and shape of the smallest topographical feature of
interest. It will also be shown that the selected 3-D noise filter
directly impacts the need for and selection of an appropriate 2-D noise
filter.

The 3-D Noise Filter. Under present assumptions, noise free three-
dimensional data representative of a scanned target would consist of a
multigrey level surface which contains two convexities; one which is
large and formed by the digitization of the randomly oriented shoe-box
base and a much smaller convexity formed by the digitization of the
truncated cone which is centrally superimposed on top of the base. In
order to evaluate how a 3-D closure or opening operation would
deterministically influence a noise free topographical surface such as
this, one should recall (from the previous chapter) that a 3-D closure
noise filter would, in general, remove small concavities (i.e. f£ill in
potholes within which the 3-D structuring element could not fit down
into) but leave convexities on the surface unchanged. Conversely, the
3-D opening operation would remove small convexities (i.e. olip off
bumps on the surface within which the 3-D structuring element could not
fit up into) while leaving concavities in the surface intact. Thus, the
use of a 3-D opening operation as a noise filter limits the size of
allowable 3-D structuring elements (and, hence, 1limits the size of
convex noise spikes that can be filtered) to those which can fit up into
the smallest convex 3-D feature (the top of target class three) or else

part or all of the convex feature would be removed by the noise filter.
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Since the selection of a 3-D structuring element for use irn a 3-D
closure operation is not limited in this manner, the 3-D closure noise
filter would appear to be less limited in design flexibility and hence
more desirable, However, the earlier assumption that noise is
statistically independent implies that a large 3-D structuring element
is not required to remove noise since noise will "most often" appear as
independent spikes on or small potholes in ¢the 3-D surface.
Additionally, while a 3-D closure operation which used a 1large 3-D
structuring element =xay work quite well under the clutter free
environment assumed for this analysis, in a less academic environment a
3-D closure operation which uses a large 3-D structuring element would
tend to connect the target to other nearby surface convexities (trees,
buildings, other vehicles or terrain) if this large 3-D structuring
element could not fit down into the concavity which separates the target
from other convex objects, The following example will attempt to
illustrate these concepts by describing the 3-D closure and opening
operations as applied to a convex object in the presence of noise.
Figure 26(a) illustrates a 3-D surface realized by digitizing the
height of a shoebox shaped object, the sides of which are aligned with
the axis of a regular rectangular scanning grid. When using the 3-D
structuring element By (of Fig. 26(a)), neither a 3-~D closure nor a 3-D
opening operation will change (distort) the noise free surface labeled
H. This is because structuring element B, can fit down onto/around
(closure) and up into (opening) each cell above and below the surface
respectively. Figure 26(b), on the other hand, illustrates the results
of applying a 3-D closure and opening operation to this same surface

using the seven cell 3-D structuring element labeled 82 . Note that the
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Fig. 26,

Closure and Opohing Applied to A 3=D Image
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concave corners of the surface have been filled in by the closure
] C operation because the 3-D structuring element 82 could not fit down into
these cells without intersecting the surface. Likewise, during a 3-D
opening operation, the convex corners of the convex object were removed
because the 3-D structuring element 32 could not fit into these cells.
Since the 3-D opening operation reduced the volume of the convexity 5
1 significantly, when thresholded at one half the height of the 'original
shoe-box object (1.5 cells), its 2-D binary image, Th(HB2 ), i3 smaller
then Th(H 2 ) or Th(H).

Continuing the example, Fig. 27(a) 1illustrates the 3~D surface (H)
of Fig. 26(a) following its distortion by three kernels of additive
noise. A central veftical section of this noise corrupted surface is
also illustrated in Fig. 27(a) and the concavity and convexities formed
by the additive noise are labeled 04, Ny, and n3 N Observe that the
concavity n, and the convexity ny have created a hole and an unconnected
state "1" cell respectively in the thresholded image Th(A). If the
surface labeled (A) of Fig. 27(a) is filtered by a 3-D closure operation

which uses the 3-D structuring element B, (of Fig. 26(a)), the surface

and thresholded image of Fig. 27(b) are obtained. Note that the
concavity n, has been filled in (because the structuring element could
not fit down into it) and that while the convexity n, remains
unchanged, the convexity ng has become connected to the shoe-box object
because the structuring element could not fit into the concavity formed
between the convex noise spike qa and the larger shoebox shaped

convexity. The application of a 3-D opening operation to the noise

corrupted surface of Fig. 27(a) results in the surface labeled ‘B
1#

illustrated in Fig. 27(c). Note that the 3-D opening operation has not
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only removed the convex noise spikes (n, and nj ) but has also removed a
large portion of the larger convexity because the oconcavity n3 bhas
prevented the 3-D structuring element (B;) from fitting all the way up
into the shoe-box shaped convexity. The resulting thresholded image
Th(AB1) is the mull set.

To oonclude this example, Figs. 28(a) and (b) illustrate the result
of applying 3-D closure and opening operations to the noise obrrupted
image of Fig. 2T(a) using the seven cell 3-D structuring element labeled
B, in Fig. 26(a). Note that the results of using this structuring
element are very similar to those obtained using the 27 cell structuring
element B1 . In each case, however, the thresholded binary images more
closely match the ideal (noise free) threshold image of Fig. 26(a) when
the 3-D closure and opening operations use the seven cell By structuring
element. This of course will not always be the case. However, under
the present assumptions and for small convex features of interest, the
3=D closure operation using the qz structuring element will generally be
more useful than a 3-D opening operation because it will retain
sufficient convexity to provide a 2-D threshold image while a single
noise concavity could cause a 3=D opening noise filter to erode the
available information to heights below the threshold value. Therefore,
even though the 3-D closure noise filter can potentially enlarge
portions of convex features and connect nearby objects to targets of
interesat, the 3-D olosure operation retains all of the available
convexity information of the noisy 3-D data as well as fill in small
concavities which may appear in the surface. Thus, following a 3-D
closure operation, the thresholded 2-D image will at least oontain the

thresholded 2-D image obtained by thresholding the unfiltered 3-D
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surface. This relationship can be described as

Th(A) < Th(AD) ' (38)

where Th( ) is the height threshold operation, A is s 3-D surface of

multigrey level data, and AB is the closure of the surface A using the

3-D structuring element B. Equation 38 is a direct extension of the

two~dimensional relationship of Eq. 35 for a 2-D binary image consisting

of state "1" cells in a state ®0% field. In three space, the convention

of state "1" cells being below the surface and state "0" cells being

above the surface extends to the concept that the surface resulting from

a 3=D closure operation will cover the unfiltered surface (i.e. the

unfiltered surface will be below or equal to the 3-D closed surface).

The results of thresholding surfaces sharing this relationship should be

obvious.

A third potential 3-D noise filter earlier described as a local

averaging function was not selected for use becauss, unlike 3-D closure,

it does not exhibit the ability to totally remove noise which is either

uncorrelated or correlated in one direction (as illustrated in Fig. 21)

and a relationship similar to Eq. 38 cannot be shown for an unfiltered

surface and its locally averaged counterpart.

In summary, the 3-D closure noise filter was selected because, in a

noisy environment, it removed concavities in the 3-D surface without

reducing the size of any convexities that may exist on the 3-D surface.

This property of 3-D cloasure operations is most important since the

target models appear as convex objects in three-dimensional height data.

seven cell

The 3-D closure operation will use the 3=-D structuring

element labeled B, in Fig. 26(a) because it is large enough to remove =
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independent or slightly correlated concavities in the surface as well as

£{11 in occasional missing lines of scanned data. This same structuring
element should be small enough to prevent unnecessary surface growth due
to connecting the convex target objects to nearby convex noise spikes or
other convex objects. The local average and 3-D opening filters were
not selected because they did not exhibit the ability to totally remove
concavities nor did they retain all the convexity information available
within the unfiltered 3-D surface. The selection of this 3-D noise
filter has been shown to be <closely related to the noise
characteristics, the size and nature of the smallest 3-D features of
interest, and the method by which the 3-D feature is measured (i.e.
thresholding). The following section will now describe how the 3-D
closure noise filter, when combined with the erosion method of measuring
thresholded 2-D images, directly influences the need for a 2-D noise
filter.

The 2-D Noise Filter. This section will discuss how the geometries
of the targets, the use of a 3-D closure noise filter, and a yet to be
described method of feature measurement combine to negate the need for a
2-D noise filter operation.

In Chapter III, it was suggested that a 2-D closure operation could
be used to fill in holes or edge $oncavit1es of state "0" cells in 2-D
binary state "1" objects. For a 2-D binary object (obtained, perhaps,
by thresholding the shoe-box shaped base of a target model) to contain a
hole or edge concavity, one or more of the cells describing the top
surface must be corrupted with noise to a height below the threshold
value. If the noise free height of the i1,J th cell of an object is ¢

1,J
and the threshold value selected is Th, then a zero mean additive noise
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source (§) would induce a hole in the surface's thresholded image if the

realization of noise x; 4 had a value such that

ey 4+ x1.1< Th . (39)

The probability of a hole or concavity occuring at the i,]J th position
of a binary image formed by thresholding a noise corrupted 3-D surface
is
P [ci,J + xi,J< Th] = j-xg;g(x)dx =p (%0)
X=-0s

where ﬂg(x) is the probability density function of the noise source.
Recalling that a 3=D closure operation can be used to fill in surface
concavities within which the 3-D structuring element cannot fit down
into, the application of a 3-D closure operation to a 3«D surface
insures that a hole or concavity will not exist in the thresholded 2-D
image of that surface unless the 3-D structuring element fits down into
the concavity on the 3-D surface to at least a depth below the threshold
height. Therefore, if prior to thresholding, the 3-D surface were
filtered using a 3-D alosure operation that used a 27 cell (3x3x3) 3-D
structuring element, the probability of a hole existing in the
thresholded 2-D binary image would be p9 assuming spatially independent
noise. Likewise, the probability that any cell on the edge of the same
2=-D binary image would exhibit a concavity would again be p for an

¥ for a 3-D oclosure filtered

unfiltered surface and no more than p
surface. The probability of such an event ococuring is, of ocourse,

finite and is related to the shape and size of the 3-D convexity within

which the concavity may occur as well as the shape of the structuring
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element. However, the application of a 3-D closure noise filter
operation to the 3-D data prior to thresholding will generally make the
probability of a hole or concavity occuring in the 2-D binary image very
amall, hence, negating the need for a 2-D closure noise filter.

The other potential 2-D noise filter discussed in Chapter III was
the 2-D opening filter which was effective in removing edge convexities
and small unconnected cells of state "1" noise. Since the 3-D oclosure
operation was shown not to be effective in removing 3-D surface
convexities which, when thresholded, form these convex forms of 2-D
noises, the need for a 2-D opening noise filter appears quite 1logical
and appropriate. However, the next section will shortly describe that
the initial step used to measure the size and shape of the 2-D binary
images is a sequence of one or more erosion operations. Thus, assuming
the same 2-D structuring elements would be used, any convexities present
in the 2-D images which would have been removed by a 2-D opening
operation would also be removed by the shape measurement erosion
sequence and a 2-D opening operation would therefore be redundant. In
the event that 3-D features are selected (or noise is experienced) which
invalidates any of these assumptions, then the geometries associated
with this modified environment should be reviewed to determine 2-D noise
filter requirements.

Feature Measurement

The circular and rectangular images obtained by height thresholding
the scanned target models were selected as features because they provide
simple but unique 2-D measurements of eaog target's 3D geometriocal
volume. This section will describe an approach to measure these

features., The cirocular feature will be measured by simple erosion
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sequences while the more complex rectangular features require additional
procesaing to extract shape information. Significant issues which
directly influence the performance of the processor such as target
translation and rotation, algorithm selection, processor architecture,
and the probability of false alarm rate will be specifically addressed.

Lircle Meaaurement. When thresholded, the truncated conical tops
of each target olass will result in circular 2-D disk shaped objects.
However, due to the finite resolution of the digitizing grid (i.e. the
scanning secsor) and the assumed random positioning of the target on
this grid, sany 2-D binary image realizations can be experienced for
each digitized target top. Several typical examples of thresholded
target tops for each target class are illustrated in Fig. 29. This
section will describe how a simple erosion sequence can be selected to
provide a useful geometrical measure of digitized randomly positioned
circular disks of arbitrary radius.

In Chapter III, each of the cells remaining in state "1" following
an erosion sequence were shown to be the root cell positions at which
the erosion sequence's equivalent structuring element fit into the state
"{" cells of the uneroded binary image. Thus, by counting the mmber of
residue cells (the state "1" cells which remain following an erosion
sequence), a limited measure of size information relative to the
uneroded image and the equivalent structuring element can be inferred.
Figure 30(a) provides 2-D images obtained by digitizing three different
objects. The residues obtained by eroding these objects with two
different erosion sequences will 1illustrate the proposed sige
neasurement technique as well as introduce the issuea associated with

srosion sequence selection. The erosion sequence B,, vhen applied to
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each image of Fig. 30(a), results in the images (residues) illustrated
in Fig. 30(b). The residue counts for these images are one, seven, and
eleven for images A,, A2, and A3 respectively. Stated equivalently,
the structuring element B, (a 3x3 square) fit into the state ™"1" cells
of image A4 once, A2 seven times, and A3 eleven times, Note that the
erosion residue of image A1 implies that the largest area of the image A1

is about the same size and shape as the structuring element B The

7
larger residue counts of images A> and A3 imply that the 'struoturing
element By fit into these images in several positions but, other than
knowing that the images Ap and A3 are larger than By , very 1little can
be concluded about their gross shape. Continuing the example, eroding
the binary images of Fig. 30(a) with the structuring element B, results
in the residues illustrated in Fig. 30(c¢). Note that the image Ay could
not contain the structuring element By and therefore eroded to the null
set, image A> eroded to a residue of one, and the image A3 , which had a
larger residue count than A> for the By erosion sequence, eroded to the
null set. Thus, a large count of residue cells does not always indicate
a large object and, in general, larger structuring elements which fit
into an object at only a few positions convey more about the groas
uneroded shape of the object than a smaller structuring element could.
Qualitatively, given the task of attempting to detect (measure) cirecular
shaped binary objects of a certain diameter, one should select a
structuring element (erosion sequence) which has a maximum width
slightly smaller than the diameter of the circular object and, following
similar logic, has a circular shape. Even with this knowledge, the

large variety of images obtained by digitizing randomly translated disks

makes the selection of an appropriate erosion sequence for each




truncated target top a nontrivial task. Stochastic Geometry (Ref. 9)
has demonstrated some success in establishing statistical measures of
geometrical questions such as this, but these measures are not directly
related to specific geometric shapes of the digitized images.
Therefore, a Monte Carlo simulation was designed to address the question
of what structuring elements were best suited to fit consistently but
not too loosely (i.e. which structuring element fit snuggly) into
digitized randomly positioned disks of various diameters in the absence
of noise.

The Monte Carlo analysis was implemented by randomly positioning
(uniformly) thirty-five circular disks of a given radius onto a
digitizing grid. Since geometrical probabilities do not address
specific geometric shapes, a sequence of trial and error experiments
were used to establish that, for arbitrary random number (translation)
generator seeds, the relative frequency of occurrence of specific
geometric shapes (resulting from digitizing the randomly positioned
disks) was repeatable if at least 35 disks were used for a given Monte
Carlo experiment., The digitized 2«D binary images of these disks were
then individually eroded by each of the first 12 structuring elements
illustrated in Fig. 31 and the number of cells which remained following
each erosion sequence (i.e. the residue count) was recorded. The radius
of the disk was then increased by .1 unit and the procedure repeated for
disks of radii between 1.5 and 5.5 units. The structuring elements of
Fig. 31 were selected because they represent the smallest symmetrical
erosion sequences which can be implemented by combining the basic von
Neuman (SE1) and Moore (SE2) noighborhoo&s.

Recalling that the intent of the Monte Carlo analysis was to
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determine which structuring elements fit snuggly into the digitized
disks, the concept of fitting snuggly had to be bounded. An obvious
lower bound for the residue count of a snug fitting structuring eleament
was established by requiring the structuring element to fit into each of
the thirty-five events (randomly positioned digitized disks of a
specific radius) at least once. An upper bound on the residue count for
a snug fit must also be established to limit the number of positions
(i.e. 1limit how loosely) a structuring element can fit into the
digitized disk. The upper bound, however, cannot be arbitrarily
specified since there are only a limited number of structuring elements
available, and one structuring element cannot be declared too loosely
fitting until the next larger structuring element starts fitting
snuggly. The Monte Carlo evaluation, therefore, provided a means to
establish the size of the smallest circular disk within which ezch
structuring element of Fig. 31 could consistently be contained at least
once for all 35 events. Circular disk shaped objects of radius between
1.5 and 5.5 pixels were thereby partitioned into sets, each set
specifying the size of disks, within which, one of the structuring
elements of Fig. 31 was determined to be snug fitting according to the
residue count criteria described above.

To illuatrate the Monte Carlo results, Fig. 32(a) plots the
smallest residue count experienced for the SE1, SE2, and SE3 structuring
elements as applied to the 35 samples of digitized circular disks. As
the radii of the circular objects were increased from 1.5 to 3.5 units,
the point at which each structuring element begins to fit 4into the
circular objects clearly specifies the lower and upper radii bounds

within which each structuring element fits snuggly. For example, 3Bt
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did not fit at least once into all 35 randomly translated and digitized
disks until the disks attained a radius of 1.6 units, SE1 then
continued to fit snuggly until SE2 started fitting into all 35 disks of
2.1 units radius. Thus, if a circular object had a radius of 2.2 units,
then the SE2 erosion sequence would fit snuggly into this object while
SE1 would fit too loosely and SE3 would be too large. Figure 32(b)
sunmarizes these results by listing the radii over which the smaller 12
structuring elements of Fig. 31 were determined to be snug fitting.
While these results establish which erosion sequence should be wused to
measure circular objects of a given radius based upon the snug fit
eriteria, it would also be desirable to understand how well these
selected erosion sequences perform their shape measurement tasks. For
example, when geometrically measuring discrete shapes by counting the
number of cells which remain following an erosion sequence, it would be
desirable to know that the measurement technique consistently provided
the same residue count regardless of where the circular object was
placed on the digitizing grid. As an aid in describing this concept,
for a circular object of given size and a specific erosion sequence, the
residue set is defined as the set of unique residue counts (integers)
obtained when the continuous object is digitized and eroded at many
random positions on a digitizing grid. Likewise, the residue set spread
is defined as the number of integers separating the largest and smallest
events in the residue set. Small nonzero residue sets and narrow
residue set spreads would, therefore, be desirable since this would
imply that the structuring ele;ent not only fit snuggly but also fit
consistently within the digitized images. Figure 32(c¢) illustrates the

residue set spread function exhibited by structuring elements SE1, SE2,
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and SE3 as they vere applied to 35 samples of digitized circles of radii
1.5 to 3.5 units. More generally, the largest residue set spread
exhibited by the snug fitting structuring elements as defined in Fig.
32(b) was four and was more typically only two or three integers wide.
The desirability of these relatively consistent and narrow residue set
spreads will be further discussed following the next section which
describes the measurement of rectangular shaped binary objeets.'

Rectangle Measurement. This section will describe how an erosion
sequence is selected and used in conjunction with a medial axis
transformation (MAT) and an end erosion operation (EERO) to measure the
size and shape of 2-D binary rectangular objects. The proposed design
addresses the rotational sensitivity of discrete erosion sequences, the
application of MAT and EERO to extract length and shape information, and
how the goal of low false alarm rate is supported by the algoritm
selection process.

The 2-D binary rectangular features obtained by thresholding the
target bases are significantly more difficult to measure than circular
features because they are not rotationally invarient and, since they
cannot be geometrically described by a single measurement (such as
radius), both length and width measures must be developed. As with
circular features, the basic approach of selecting a structuring element
which fits snuggly into the rectangles (i.e. selecting an erosion
sequence that consistently reduces the reotangles to a saall nonzero
number of state "1" gells) can be used to measure the rectangle's
ainimum dimension, the width. However, the erosion sequence selection
process is complicated by the fact that the structuring elements are not

round and their ability to fit snuggly into a digitized rectangle 1is
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highly dependent upon the uncontrolled orientation of the target

(\w (rectangle).
Figure 33 conceptually illustrates the relative sensitivity of two

erosion sequences to the orientation angle of a rectangular object. Ir

P L S

we assume that the first erosion sequence exhibits a round equivalent
structuring element of radius w/2, the circular structuring element

(illustrated in Fig. 33(a)) fits into the rectangle at any orientation

and the locus of its center, which represents the residue of the erosion
sequence in this example, provides a rotationally invariant measure of
the rectangle's length. On the other hand, Fig. 33(b) illustrates that
a second sequence of erosions which exhibits a square equivalent
structuring element of width w can only fit into the same rectangular :
image at one orientation and, as a result, provides a rotatiomally i
sensitive measure of the rectangle's width and length. Unfortunately,

given a specific rectangular object, the finite number of discrete

symmetrical structuring elements (erosion sequences) to choose from does

not generally allow the selection of one which is circular in shape and

fits snuggly into the digitized rectangular object at all rotations and 3

translations. Figure 34 1illustrates a typical example of how the
L limited number of symmetrical erosion sequences forces the system

designer to use a less than ideal erosion sequence and how an additional ]

o
-

1 1 operation can be implemented to overcome some of its inherent ;

: limitations. Figure 34(a) illustrates the results of digitizing a 6.%
é 'i by 12.0 pixel rectangular object at three different orientations with
respect to the digitization grid. Of course, the original binary images
5 consisted of all state "1% cells but, since the illustrated images have

(" been eroded by the SE7 structuring element of Fig. 31, the eroded ocells
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have been changed to state "0 and the remaining state "1* cells are the
residue of the erosion sequence. Without illustration, it should be
obvious that a smaller structuring element such as SE6 would fit into
the original binary images at more positions (i.e. more loosely) than
SET and is therefore not as asnug a fit and is less desirable for
rectangle width measurement. Likewise, the next larger structuring
element (SE8) is too large to fit into the original digitized
rectangular images at all translated and rotated positions (even though
it does fit into the examples of Fig. 34) and is therefore not a viable
snug fitting structuring element for this sized rectangle. Thus, for
this sized rectangle, the SET erosion sequence must be used evei. though
its residue (state "1" cells) is more than one cell thick and a simple
cell count procedure cannot be used to estimate the length of the
rectangle. While there is little that can be done about SET's loose
fit, the medial axis transformation (MAT), described in Chapter III, can
be applied in situations such as this to reduce the residue cells to a
skeleton one cell in width. Figure 34(b) illustrates the application of
the MAT to the residues of Fig. 34(a). Note that the state "i" cells
which were removed by the MAT have been changed to state "M" (for
illustration purposes) and a simple cell count of the remaining state
"{® cells can be used to estimate the length of the rectangle. Thus,
the MAT will be applied in conjunction with the basic erosion sequence
in each branch of the processor which is designed to measure the 1length
and width of rectangular objects.

A Monte Carlo analysis was used to determine which structuring

element, when used in conjunction with the MAT, demonstrated both a snug

f£it and an insensitivity to rectangular image translation and rotation.
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In a manner similar to that used for the circular features, continuous
rectangles of varying minimum dimension (the length was arbitrarily set
to twice the width to prevent telephone-~pole shaped rectangles which are
not typical of tactical vehicles) were positioned on a digitizing grid
at thirty-five random translations at seven equally spaced angles over
the interval (0, 45) degrees. Each event (each digitized randomly
positioned rectangle) was then eroded by each of the structuring
elements of Fig. 31, skeletonized by the MAT, and the number of
remaining cells was recorded. Upon reviewing the results of the Monte
Carlo simulation, it became apparent that while a simple "snug fit®
erosion sequence selection criteria (similar to that used for circular
features) did specify which structuring elements were snug fitting with
respect to the width measurement, this criteria did not establish which
erosion-MAT sequences provided consistent rectangle 1length estimates.
Fortunately, the residue set spread function (which was briefly
described in the previous section) provides a great deal of information
concerning the ro.ational invariance and length measurement consistency
of an erosion-MAT sequence. Figure 35 provides the residue set spread
functions obtained by Monte Carlo anzlysis for the typical SE6 and SET7
erosion-MAT sequences. For rectangle widths below 4.6 pixels, the
residue set spread is zero for both sequences since neither astructuring
element fit into any of these events, As the width of the rectangles
was incrementally increased, the structuring elements began to f£it into
the digitized images and increase in size since some events (digitized
randomly positioned recotangles) can contain the structuring element at
several positions but other events cannot contain it at all due to the

rectangle's angle of rotation with respect to the digitization grid.
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The duration and height of this initial relative maximum is directly
related to a structuring element's shape. For example, a square
structuring element such as SE6 will exhibit a wide and high relative
maximum since its size (SE6's diameter) varies significantly as a
function of rotation angle. On the other hand, a 1less square
structuring element such as SE7 fits into all events shortly after it
starts fitting into some and, therefore, its relative maximum is not
nearly as large as the square structuring element SE6. A truly round
structuring element would, of course, not exhibit any initial relative
maximum at all. Continuing the example, both structuring elements start
ritting at least once into all the events (an occurrence not commonly
experienced) at 6.8 pixels, and it is at this point (ecircled in Fig. 35)
that the residue set spreads begin to decrease. The sharp decrease in
residue set spread exhibited by SE6 is due to the tendency of square
structuring elements to fit into a rectangular object at many positions
or not at all. Nonsquare structuring elements, on the other hand,
exhibit a more gradual decrease in residue set spread and will, in
general, exhibit a smaller and more lengthy initial relative minimum,
Finally, as the rectangle width is increased, both structuring elements
experience increases in residue set spread due to the increased number
of residue cells which results in increased skeleton variations.
Therefore, the residue set spread function provides both a measure of a
structuring element's roundness as well as a consistency measure for the
length estimate characteristics of the erosion-MAT sequence. In the
example of Fig. 35, assuming for illustration purposes that no other
erosion-MAT sequences are available, both SE6 and SET become snug

ritting with respect to the rectangle's width at 6.8 pixels but, since
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SB6 exhibits a more consistent estimate of rectangle length (i.e. has a
‘l;, lower residue set spread) over the interval of rectangle widths from 6.8
to 7.2 pixels, it would be the preferred erosion-MAT sequence in this
interval. SE7 would then be the preferred erosion-MAT sequence for
measuring rectangles with width greater than 7.2 pixels until a larger
snug fitting structuring element exhibited an erosion-MAT residue set
spread smaller than SET. The preferred erosion-MAT sequences were
established by Monte Carlo simulation for rectangular objects between
2.8 and 12.0 pixels in width by applying this same selection criteria to
the set of structuring elements of Fig. 31. The results are provided in
Table 1. Several erosion-MAT sequences do not appear in the tabulation
because the square shapes of their equivalent structuring elements
prevented them from attaining a narrower residue set spread than other
snug fitting erosion-MAT sequences. In conclusion, for an erosion-MAT
sequence to be preferred with respect to the measurement of rectangles
of a given width, not only must the residue counts obtained during the
Monte Carlo simulation be nonzero for all 35 events (i.e. snug fitting}.
the sequence must also exhibit the smallest residue set spread.
While the above proposed erosion-MAT sequence followed by a simple

cell count provides a reasonable amount of shape discrimination

capability, the many-to-one property of erosion sequences is a limiting
factor because there are many nonrectangular objects which will exhibit
skeletons with a cell count identical to that of any given rectangle.
Figure 36(a) 1llustrates three geometrical shapes which have been eroded
using the SE2 erosion sequence and skeletonized by the MAT. As in the
previous example, the state "0" cells specify those state "1 ocells of

the original image which were eroded by the SE2 erosion sequence and the
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TABLE I
PREFERRED EROSION-MAT SEQUENCES
FOR RECTANGULAR OBJECTS
(REF, FIG, 37)
STRUCTURING RECTANGLE WIDTH *
ELEMENT FROM T0
SE1 2.8 4,0
SE2 4,0 4,8
SE 3 4.8 5.3
SEL 5.3 7.0
SE 6 7.0 7.2
SE7 7.2 9.0
SE11 9.0 10,5
SE12 10.5 12.0
;_’ * PIXELS

c .
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state "M" cells specify the cells of the residue which were removed

during the skeletonizing (MAT) procedure. Note that a simple cell count
at this point would not permit the proocessor to discriminate between
these shapes because they all have 9 cells in their skeletons. To
improve the ability of the processor to discriminate between rectangular
skeletons (skeletons which typically have a single long 1l1limb) and
objects which have multiple limb skeletons, an end erosion 6peration
(EERO) was implemented in the branches of the processor which were
designed to measure rectangular features. Figure 36(b) illustrates the
results of removing 3 state "1" cells from the ends of each of the
skeletons of Fig. 36(a). Since the skeletons of the round and the
irregular shaped objects had multiple limbs, the number of state "i"
cells in each limb was small and the skeleton was completely eroded by
the end erosion operation. However, since the single limb of the
rectangular object was long, 3 state "1" cells remained following the
EERO. Thus, the EERO has provided a convenient means of providing an
improved shape discrimination capability to the cellular 1logic
processor.

In summary, the rectangular images are measured in both width and
length by applying an erosion sequence in conjunction with the nedial
axis transformation. An end erosion operation is then applied to
improve the processor's rectangle shape discrimination capability. The
next section will describe the decision criteria and how they combine
with the feature extraction algorithms to support 1low probability of
error and false alarm rate goals,

Jhe Decision Criterda

While the earlier sections of this ochapter have concentrated on
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describing the algorithm selection process and the numerous innertwining
relationships cellular logic feature extraction approaches exhibit, this
section will describe the criteria by which decisions are made. Before
proceeding, however, Fig. 37 provides a summary of the processor
architecture which illustrates the 3-D noise filter, the thresholding
operations, the selected erosion sequences, and the MAT and EERO
operations for the three branches designed to detect rectangular
objects. Following these shape measurement operations, the feature ac-
cept or reject decision is effected by comparing the residue count (ri )
of each branch to an acceptance window (AWi) designed specifically for
that branch. Finally, following this comparison, the output states of
all six branches (labeled L1 through L6 in Fig. 37) are logically
compared to affect a target class decision.

The decision criteria proposed in the following two sections can be
summarized as follows:

(a) develop accept-reject regions for each feature and target class
by applying a likelihood ratic test to the class conditional pdf's
experimentally obtained via introducing a synthetic training set of
targets to the processor of Fig. 37.

(b) 1logically combining each branch's output state (feature
detected or not detected) to affect a target class accept-reject
criteria. This approach to designing decision criteria is often used in
pattern recognition tasks because it is simple to develop and implement
and also permits a great deal of flexibility in accommodating a priori
information concerning the reliability of feature detection between
target classes. Since the proposed decision oriteria does not, for

example, apply a likelihood ratio test to the Jjoint (for all
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branches/features) class conditional pdf's, the proposed design criteria

performance may not be equal to that theoretically possible (Ref. 5).
However, as will be described later, the flexibility attained by
applying the proposed decision criteria permits adjustments to be made
to the decision logic that can asignificantly improve the potential
probability of detection without significantly inoreasing the error
rate. The feature accept or reject decision criteria will first be
described.

Feature Acceptance Window Design. As earlier described in this
chapter, each branch of the six branch processor is designed to detect
objects which are similar in size and shape to a feature of one of the
three target classes. Following the shape measurement algorithms
indicated in Fig. 37, a basic residue cell count operation is
implemented. Since every object presented to the processor passes
through each of the six branches, a set of three sample class
conditional probability density functions (pdf'*s) can be estimated for
the residue counts of each branch by presenting digitized randomly
positioned training samples of each target class to the processor.
Figure 38 provides an example of a set of class conditional pdf's for
the ith branch of the processor where the abscissa value indicates the
residue count (i.e. the number of state ®1" cells which remain)
following the feature measurement algorithm and the ordinate value
indicates the relative frequency of occurrence of each sbscissa value
experienced for 35 training samples of each target class. Note that the
sample pdf's obtained in this manner are conditioned on a target oclass
and apply only to the 1th branch since the threshold values and feature

measurement algorithms vary from branch to branch, Since Fig. 38
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TABLE II

BRANCH ACCEPTANCE WINDOWS
(Ref. Fig. 37)

st = [1,2,3,4] s == [1,5,6
w2 - [2,3.4) as —[s,5)

a3 - [1.2,3,8) a6 - [2,3.8,5)




actually represents the sample pdf's for the third branch which is
designed to detect the smallest circular feature (i.e. the tops of class
3 objects), it is not surprising that the residue counts of class 2 and
class 3 objects are quite similar. This is, of course, due to the fact
that the tops of class 2 and 3 objects are similar in size. Likewise,
since the binary images obtained when thresholding class 1 objects at
the branch three threshold height are large, the branch 3 erosion
sequence does not erode a large portion of the class 1 thresholded tops,
and the residue counts are large and easily discerned from the eroded
tops of class 2 and 3 objects. When two class conditional pdf's share
common abscissa values as do classes 2 and 3 of Fig. 38, the application
of a likelihood ratio test (Ref. 27) results in an acceptance window of
(1,2,3,4) for the circular feature of class 3 objects. When used in
conjunction with a symmetrical cost function and equal a priori class
probabilities, the likelihood ratio discriminant results in minimum
misclassification error rate performance which is consistant with
processor design goals.

In summary, the feature acceptance window for each branch is
designed by presenting 35 randomly positioned digitized training samples
of each target class to the processor, estimating the class conditional
probability density functions for the residue counts observed in each
branch of the processor, and then applying a likelihood ratio test to
establish the residue counts that are acceptable for an unknown object
to be claassified as containing the feature assooiated with each branch
of the processor. Each branch of the six branch proceasor will thus

have a single acceptance window, and an unclassified object will be

deterained to exhibit a specific feature only if the residue count of




that object is an element of the feature acceptance window of the branch
designed to detect that feature. The acceptance windows for the
processor of Fig. 37 are summarized in Table 2. If nontarget objects
(clutter, noise, trees, other vehicles, etc.) are presented to the
processor, the residue counts exhibited by each branch may fall anywhere
on the abscissa depending upon the statistical geometries of the
nontarget objects. Thus, narrow acceptance windows become highly
desirable to minimize the probability of false alarma, and the earlier
techniques used to determine which erosion sequences provided small
residue set spreads should now be better understood. Once an object has
been processed by all six branches, a determination must be made as to
whether the unknown object is a member of one of the three target
classes.

JIhe Iarget Class Decision. Two target class decision criteria will
be presented. The first requires exact classification and decreases the
probability of error at the expense of detection performance to a point
where a P4y of 1.0 is not possible even in the absence of noise. The
second decision logic approach is less restrictive and provides for
significantly improved performance by accommodating feature similarities
between target classes.

Following the comparison of each branch's residue count with its
acceptance window, the lines labeled L1 through L6 in Fig. 37 will be
defined to be in state "T" if the residue count is an element of that
branch's acceptance window and in state "F" otherwise. Thus, for an
unidentified objeot to be classified as a member of a specific target

class, the most restrictive decision criteria would require that the two

branches designed to detect the top and base of that target claas be in
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state "T" and the remaining four branches be in state "F". For example,
the processor would classify an object as a member of target class 3 1if
the outputs of the third and sixth branches (L3 and L6) were in state
"T® and the branches L1, L2, L4, and L5 were all in state "F". Table 3
summarizes this strict target class decision criteria. While simple in
design t 1d implementation, this strict decision criteria does not take
into account that the tops of class 2 and 3 targets are very similar in
size as are the bases of class 1 and 2 targets. By relaxing the
decision criteria to permit the target class acceptance states as
described in Table 4, the performance of the six branch procesor can be
significantly improved. Of course, since the acceptance states of Table
3 are a subset of the acceptance states of Table 4, the Pd of the
relaxed decision criteria will be higher than that of the strict
decision criteria. On the other hand, since more acceptance states are
allowed in the relaxed decision criteria, its false alarm rate will be
larger than that of the strict decision criteria. Quantitative analysis
of these relationships can, in general, only be accomplished by
extensive field tests or, when clutter and noise models are available,
by Monte Carlo simulations. However, one would not expect the relaxed
decision criteria to exhibit a noticeable increase in misclaasification
rate because the tops of class 1 targets and the bases of class 3
objects are easily separable due to their unique sizes, A qualitative
performance comparison of the strict and relaxed decision criteria as
applied to an arbitrary ameasure of false alarm rate is provided 4in the
following chapter.
In summary, the proceasor design approach described in this chapter

provides a systematio approach to neighborhood transformation pattern
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(y TABLE III
STRICT DECISION CRITERIA
ACCEPTABLE BRANCH STATES
L1l L2 L3)Le] Ls| Lé
§ Tgt. 1 | T F F T F F
AlTagt. 2 | F T F F T F
§ Tgt. 3 | F F T F F T
TABLE IV
RELAXED DECISION CRITERIA
ACCEPTABLE BRANCH STATWS
( Lt} t2]L3]Ls]iLs] L6
) T F F T F F
Tzt. L | T 7 F T T F
T F F 7 T 7
F T F F T F
F T F T T F
- F T F T F F
ﬁ Tgt. 2 | F T T F T F
b 5 F F T F T F
Q F F T T T F
F T T T T F
F T T T F F
F F T F F T
Tgt. 3 | F T T F F T
B, F T F F F T
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recognition algorithm selection. Inherent to the systematic search
design approach are several unique and productive algorithm measures of
effectiveness which not only accommodate the complex geometrical
probabilities associated with the application of discrete neighborhood
structuring elements to digitized randomly positioned targets, but also
provide a precise method of relating various performance parameters to
the algorithm selection process. The concept of describing neighborhood
transformations as structuring element operations has been described in
the literature (Ref. 11) and is a significant aid to understanding the
general effects of applying various neighborhood transformations to a
pattern recognition task. However, the unique concepts of snug fitting
structuring elements and residue set spread functions provide a
systematic approach its quantifying algorithm optimality with respect to
the desired performance criteria. The snug fit criteria insures that,
in a noise free environment, an algorithm is selected that detects all
targets presented to it and thus makes the potential probability of
missing a target zero. The residue set spread, on the other hand,
provides a method of directly relating the algorithm's potential false
alarm rate to an assumed or measured model of clutter or nontarget
objects. Additionally, minimizing the residue set spread 1is
coaplementary to the goal of high probability of detection since it
encourages selection of an algorithm which provides a consistant measure
of a target object and is relatively invariant to target translation
and rotation. Finally, the design approach is complemented by the use
of a likelihood ratio test which provides a well understood method of
relating misclassification rates to the overall processor design. The

proposed design approach can be readily extended to the measurement of
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ects in two or three dimensions. i

arbitrary shaped geometrical obje

{\ This completes the description of the processor design. The next
- i

e NI W

chapter will describe a Monte Carlo performance analysis of a processor

designed in accordance with the procedures and design rules established

in this chapter.
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V. A Performance Analvsis

This chapter describes the results of a Monte Carlo performance
analysis of a target classification processor constructed according to
the algorithm selection procedures and decision criteria established in
Chapter IV. The Monte Carlo analysis is not designed to rigorously
characterize the performance of the proposed proceésor design approach
but is designed to provide insight to the sensitivities of the design
and to investigate the validity of some of the assumptions made during
the design process. For example, the sensitivity of the design to data
which has been corrupted by additive noise or has been distorted by
platform instabilities is always of interest to the algorithm designer.
Likewise, an arbitrary measure of false alarm rate would provide a means
of comparing the strict and relaxed decision criteria. The performance
analysis also provides an opportunity to compare issues such as the
relative performance of the processor in the presence of white
(statistically independent) vs. correlated additive noise and also
encouraged the development of a normalization technique which permitted
a direct comparison of the processor's performance as applied to
features which contained different signal (energy) content. Thus, while
the performance analysis does not attempt to rigorously characterize the
performance of the design approach of Chapter IV, it does provide much
useful insight to the utility of neighborhood transformations in general
as well as the specific deaign proposed.

Rerformance Defined
The performance of the processor shall be defined as the relative

frequency at which tme processor correctly identifies the class to which
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an unlabeled target belongs. While the probability of false alarfm is
not accommodated in this definition of performance, a comparative
measure of the false alarm rate for both the strict and relaxed decision
criteria will be provided later in this chapter.

Ideally, a typical performance curve would describe probability of
detection (Pd) as a function of a parameter which is independent of the
specific features selected such as a ratio of the noise and signal
(n/s). 1In such a ratio, the signal (s) selected must be appropriately
related to the signal content of the features selected and the target
models from which they are extracted. The noise (n) portion of this
ratio is commonly a measure such as the standard deviation of the noise
source, and the noise is incrementally increased from zero until the
processor performs poorly. The desirability of presenting performance
as a function of a noise~to~signal ratio and the concept of using only
the signal level associated with the peformance limiting feature can be
best illustrated by the following simple example.

Given a 3-D target model and a processor which has two branches
designed to extract and measure the circular and rectangular features as
described in Chapter IV, Monte Carlo simulations were used to determine
the set of integers (the residue counts) for each feature/branch as the
target model was randomly positioned on the digitizing grid. Using
these acceptance windows and the same sequence of random positions,
white Gaussian noise was added to the 3-D data and the relative
frequency at which the noise corrupted 3-D data exhibited a residue
count which fell within the acceptance window for each Cfeature was
plotted in Fig. 39(a) for various levels of noise. Note that the

circular feature was significantly more sensitive to the additive noise
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than was the rectangular feature. This difference in sensitivity is, of
course, directly related to each feature's threshold height above
background since the 2-D binary image of each feature can only be
distorted if the additive noise changes a background cell to exhibit a
height above the threshold value or a cell which is normally (without
noise) above the threshold to exhibit a height lower than the threshold.
Thus, the rectangular feature has a signal level equal to one-half the
height of the rectangular base of the target model since this 1is the
rectangular feature's threshold height above background. The circular
feature, however, exhibits a signal level equal to its threshold height
minus the height of the top surface of the target's rectangular base,
In the target model used in this example (and for the target models of
Fig. 22), the signal of the rectangular feature was about three times
the signal of the circular feature. Figure 39(b) illustrates that by
normalizing the performance curves of Fig. 39(a) to each Cfeature's
signal level (threshold height above background) the processor oan
detect circular features nearly as well as it detects rectangular
features. Thus, by plotting the performance curves as a function of the
noise to signal ratio, a feature independent view of the processor's
performance can be established. Finally, if the strict decision
criteria of Table 3 is invoked, (i.e. both features of a target must be
exactly detected), the ability to detect a target can be no better than
the processor's ability to detect the performance limiting (smallest
signal) feature. Thus, when both features are required parameters 1in
the decision process, the proceasor's performance should be normalized

to the signal level associated with the performance limiting feature.

Normalizing the joint performance to a larger signal value would make
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the results unnecessarily pessimistic and inappropriate for performance
comparison with processors which incorporate different features. In
summary, the signal level associated with the circular features is the
performance limiting signal and the processor's overall performance
curves will be normalized to the average signal content of thease
features.

Ihe Analysis Procedures and Results

Monte Carlo techniques were used to both train the processor (1i.e.
design the acceptance windows for each branch) and to evaluate the
processor's performance. The 3-D data used for both training and
evaluation purposes was analytically generated by simulating a nadir
viewing line scanning range sensor and incorporated the ability ¢to
sipulate sensor platform roll rate, pitch rate, and altitude variations.
A typical performance analysis would first generate 105 samples of 3-D
data (35 randomly positioned samples of each target class). Each of
these samples would be corrupted by additive noise and then be processed
by the processor. The performance parameter Pd would then be cstimated
to be the relative frequency at which the samples were correctly
classified by the processcr.

Geometrical probabilities and discrete sampling constraints
dictated that the algorithm training set contain rotated as well as
translated target images. To accommodate rotation, the target images
were sampled at seven equally spaced intervals between gero and 145
degrees to approximate a uniform distribution. Rach target image was
also randomly translated with respect to the digitizing grid (uniformly

distributed over the interval [0,1]) to provide a representative sample

of digitized geometrical images. The total sample size of 35 randomly
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translated and rotated target images was the result of a compromise

between computational constraints and the always desirable large sample

size. Several algorithm training and evaluation sample sizes of between
10 and 100 randomly translated and rotated targets were tried and the
figure of 35 was settled upon because a larger sample size did not
generally change the feature's class conditiional relative frequency of
occurrence plot (pdf's), the feature's accept-reject regions, or the
processor's overall performance., As an additional check, the random
translation number generator seed was also changed and, for sample sizes
of 35 and larger, the design and performance of the processor remained
stable. Thus, based upon these experiment observations, the sample size
of 35 randomly translated and rotated target images for each target
class was established as reasonable to demonstrate the utility of the

processor design approach.

Ihe Basic Processor Performance. As defined earlier, the
performance of the processor is the relative frequency at which the
algorithm under evaluation correctly olassifies a target object.
Figures 40(a) and (b) describe the performance of the six branch target
classification processor of Fig. 37 for the strict and relaxed decision
? criteria of Tables 3 and 4 respectively. These results are obtained by

adding increasing amounts of Gaussian distributed noise to the
synthetic randomly translated and rotated target samples which were used
during training of the processor and then representing these distorted 3
images to the processor, While not 1llustrated, the introduction of

correlated noise to the target samples did not as adversly affect the

performance of the processor as did the statiatiocally independent noise.

b

" Several different random number (noise) generator seeds were used for
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Fig, 40. Basic System Performance
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comparison purposes and in no case did the performance of the processor
vary by more than T4 from the performance illustrated. Observe that the
relaxed decision criteria enabled the processor to attain a Pd of 1.0 in
a noise free enviromment whereas the highest attained performance for
the strict decision criteria is 0.75. This was due to the inability of
the strict decision criteria to use a priori information concerning
similarity of features within target classes 1 and 2 and classes 2 and
3. Also observe that for the features selected and the noise applied,
the 3-D local average and 3«=D closure noise filters both perform
significantly better than the 3-D opening filter. As described 1in
Chapter IV, this characteristic was due to the initial 3~D erosion
implemented with the 3-D opening operation which removes small convex
surface irregularities (such as the truncated conical tops of the
targets) when corrupted with a negative noise pulse. As hypothesized in
Chapter IV, the relaxed decision criteria provided for significantly
improved performance. However, without a comparison of relative false
alarm rates, the cost (increased false alarm rate) of implementing the
relaxed criteria cannot be properly presented.

False Alarm Rate. Without validated models of clutter and
nontarget objects, it is not generally possible to obtain a quantitative
estimate of false alarm rates. However, the topographical contours of
many geographical areas can be used to suggest modeling 3-D terrain data
as a two~dimensionally correlated random process. While most terrain
cannot be exactly modeled as such (Ref. 4), a two-dimensionmally
correlated Gaussian random process does provide a random medium against

which the relative false alarm ratea of the strict and relaxed decision

criteria can be compared. For example, if the technique desoribed by




Moshman (Ref. 17) is used to generate an array of correlated noise, and

this noise is thresholded at the two heights, specified by the target
models for the rectangular and circular features, the reaulting binary
image could be input to the processor and the resulting number of false
alarms would provide a measure to compare the relative false alarm rates
for the strict and relaxed decision criteria.

To accomplish this, 100 60x60 samples of 2-D correlated Gaussian
noise with correlation distances ranging from one to five cells and
standard deviations between four and sixteen cells were applied to the
processor of Fig. 37. Figures 41(a) and (b) illustrate the results of
applying one such noise sample to the 2nd and 5th branches respectively.
The state "1" cells are the cells which remained following the feature
extraction algor;thms and the state "E"™ cells in Fig. MWi(a) represent
the skeleton cells which were eroded {changed to state "0") by the end
erode operation. Note that in the lower central portion of Fig. 41(a)
there 1s a binary object which eroded to a residue count of three state
®{" cells and in Fig. 41 (b) the same area (at the higher threshold for
the circular feature) the residue count was five. Thus, Fig. #1
illustrates one of the few samples of noise that exhibited a false
alarm; a class 2 target for either the strict or relaxed decision
criteria. Out of the 100 samples of ocorrelated noise, only two
exhibited false alarms for the strict decision criteria and three more
false alarms were observed when the relaxed decision oriteria was
applied to the same samples of noise. While it is rather arbitrary to
apply confidence measures to these results (since the size of the noise
samples is large compared to the targets), if one considers that each

sample contains four 30x30 samples of noise (and any of the targeta can
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easily fit into this size matrix), then there are a total of 3400 noise
samples and the probability 1s at least .95 that the "true" false alarm
rate for either decision criteria is less than .05 (Ref. 5). Thus, the
relaxed decision criteria increased the false alarm rate but still
provided a relatively small false alarm rate 1in the presence of
two-dimensionally correlated Gaussian noise.

Additional Performance Characteristics. The previous analyses have
assumed perfect control or knowledge of the dynamic characteristics of
the sensor platform. The sensitivity of the proposed processor design
to geometrical distortions of the 3=-D data which may be induced by
uncorrected sensor platform pitch rates, roll rates, or altitude errors
will now be presented.

Figure 42 describes the performance of the processor of Fig. 37
(using the strict and relaxed decision criteria) when the resolution
(scale) of the 3-~D date is varied by as much as 5 percent. This form
of distortion will occur if the sensor platform is not at the proper
altitude above the terrain or if a nadir sensor is oriented slightly off
vertical. The nonsymmetrical performance degradation for equal
increases (+) or decreases (-) in target scale are due to the discrete
nature of the available symmetrical erosion sequences. While it 1is
obvious that the curves of Fig. 42 can be used to determine the
sensitivity of the processor to altitude fluctuations of the sensor
platform, they can also be used to assist in selecting a platform
altitude which provides a balanced performance degradation for equal
uncontrolled variations around the nominal platform altitude. Finally,
while not conclusive, these curves indicate that the feature extraction

algorithm selection procedure described in the previous chapter oan be
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E used to separate geometrical objects which differ in scale by about 2.5
| percent. While a sensor platform which exhibits a constant altitude
error will result in improperly scaled 3-D data, the 3-D data may also
be distorted by sensor platform pitch and roll rates.

Figure 43(a) summarizea the sensitivity of the processor of Fig. 37
to several different values of roll rate using the relaxed decision
criteria. The roll rates indicated are derived from several assumed
parameters used in the simulation; an angular resolution of 10'3
5 radians, a dwell time (per pixel) of 10-6 seconds, and a row (scan line)
length of 1000 pixels. Figure Uu43(b) provides an example of the
thresholded base of a class 3 target for a stable platform and a
platform exhibiting a roll rate of .5 rad/sec. Figure 44 provides
similar performance characteristics for the same processor but in this

case, for various 1levels of platform pitch rate. The increased

sensitivity of the processor to pitch rate is due to the assumption that

the forward motion of the sensor platform provided the scanning motion
in the direction of flight. Thus, while the entire target would be
scanned at full resolution under a platform roll rate environment, pitch
rate would induce an undersampling of the targets. As a result, roll
rate resulted in skewed objects with proper dimensions and pitch rate
resulted in skewed objects with scale variations in one dimension. This

effect would be observed in any line scanning data collection system.

Since the acceptability or unacceptability of the Chapter IV
processor performance (as determined during this Monte Carlo simulation)
is a dynamic issue and is dependent upon the appropriateness of the
assumptions made during the design and the risks and ocosts associated

4 with the specific operational application of the processor, it is
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appropriate to address these issues before proceeding to conclusions and
recommendations.
Real ¥World Considerations

The results presented in the previous sections deserve additional
discussions concerning the application of such a system in a less
academic environment.

JThe Flat Terrain Assumption. Early in this investigation, the
assumption was made that the terrain was flat so that the "first order"
sensitivities of the proposed processor design could be observed. While
some topography may be compatible with this assumption, most
geographical areas would not. This, of course, introduces a potential
design deficiency since the feature extraction technique (height
threshold) generally requires that the targets be placed on a surface
which is normal to a vertical line connecting the sensor to the target
so that the extracted features are rectangles and circles. However,
even though the flat terrain assumption appears quite 1limiting, the
existence of an imaging range sensor on board the scannirg platform does
provide much of the information necessary for the carrier platform to
follow the contour of the terrain as accurately as its aerodynamics and
guidance system permits. Thus, while this may be an unrealistic request
for a large aircraft, a small lighter vehicle such as a remotely piloted
vehicle or cruise missile may well be capable of adjusting its
trajectory quickly enough to remain at a relatively oconstant altitude
above some smootily varying terrain surfaces and, in doing so, the
scanning platform would remain appro?inately parallel to the surface.
As alternatives, a random bias filter has been suggested by Sternberg

(Ref. 23) which essentially performs a high pass terrain removal
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operation on 3-D data, and Miller (Ref. 15) has suggested that
three-dimensional features (volumes/solids) and shape measurement
techniques would be less sensitive to the varying terrain heights. Note
that the snug fitting algorithm selection process described in Chapter
IV could easily be adapted to three-~dimensional features. Thus, while
the flat terrain assumption may not be representative of typical
operational enviromments, reasonable vehicle designs, tactics, and
terrain removal filters could make the proposed simplistic algorithm and
processor design approach quite applicable to operational
implementation.

JThe Nadir Assumption. The second assumption which has operational
implications is that of the nadir (down looking) range measuring sensor.
Historically, tacticians have preferred to look forward rather than down
so that the targets are detected (and attacked or avoided) prior to the
scanning platform arrival. Logically, this improves the survivability
of the platform and permits the targets to be attacked head-on (like the
well known Kamikaze tactic). Commercial enterprises have yet to solve
the deceptively simple task of constructing a machine which can read
uncontrolled printed text as well as a typical eight year old child.
When this task is compared to that of classifying tactical targets which
are located hundreds of meters away and are controlled and disguised by
equally intelligent human beings, the difficulty of the task becomes
quite apparent. Therefore, when technology has provided a data base
which is relatively insensitive to diurnal variations and nature has
provided a viewing position (nadir) which drastically simplifies the
geometries associated with the target aoguisition task, tactios,

vehicles, and munitions should be developed to exploit these




opportunities. Perhaps the first truly reliable and autonomous target

‘L acquisition and classification capability could then be demonstrated.
& 4

Angular and Range Reaolution. The angular resolution of the

sensor, when combined with the sensor platform altitude and look angle,

determines the cell size of the digitization grid, The resolution
assumed for this analysis resulted in the smallest target containing
about ten cells for the smallest circular feature and over two hundred
cells for the larger rectangular features. The range resolution was
arbitrarily set at one tenth the angular resolution since range can be
very accurately estimated by laser ranging devices. Whether tactical
vehicles can be afforded the luxury of such high quality sensors is a
technology issue better left for others to resolve. The observation to

be drawn from the performance results is that given angular and range

resolutions of this magnitude, the autonomous classification of tactical
( - vehicles appears quite feasible - - even when conservative (with respect
to low probability of error and false alarm rates) processor design
. rules are implemented.

Feasibility of Implementation. So far, the design of a cellular

; logic target classification processor has been proposed and its

performance has been parametrically evaluated via Monte Carlo simulation

for sensitivities to additive Gaussian noise, scale, roll rate and pitch
rate. This section will address the (feasibility of using "off the
§7 shelf” hardware to satisfy the scale, pitch and roll rate limitations
i‘ imposed by the conservatively designed processor.
The peformance curves of Fig. 31 indicate that the processor oan
s accept scale variations in the 3-D data as large as 2.5 percent without

g ‘ ( drastically reducing the performance of the prooessor. For a nadir
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# viewing sensor at an altitude of 163 cell diameters, this would imply
( that the sensor platform would have to remain within an altitude window
z of £ 25.0 cell diameters to insure that the scale of the 3-D data
remained within the + 2.5 percent allowable tolerance. The ability of

an airborn platform to remain within such an altitude window is, of

course, dependent upon the control characteristics of the pilot or

autopilot as well as the weather and the nature of the terrain.
Fortunately, the accurate range (altitude) information available to the

3 pilot/autopilot should, weather permitting, make the task feasible for a

reasonably responsive vehicle.

With respect to the roll and vitch rates, sensors are generally

mounted on stabilized platforms within the carrying vehicle to isolate

the sensors from the dynamics of the vehicle. Figures 43 and 44

1llustrate that pitch rate 4is more restricting than roll rate and
% requires to be 1less than .05 rad/sec for reasonable processor

performance. This, of course, is a very easy specification for modern

R M

day stabilized p'atforms to satisfy, and even suggests that, under these
assumptions, a stabilized platform may not even be needed. However,

more system oriented investigations will be required before such a

suggestion can be seriously considesed.

Acceptable Performance. The definition of "acceptable performance®

in an operational environment must remain flexible due to the values and

risks associated with various targets and scenarios. If an extremely

low false alarm rate is required, such as when friendly forces are in

the area, 2 probability of detection significantly less than 1.0 may be

quite acceptable. Conversely, if the targets were in a free fire =zone,

videning the acceptance windows and/or deleting the performance limi:iing
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feature and relaxing the decision criteria could provide a probability

of detection of 1.0 for relatively large noise-to-signal ratios. or
course, a high Rd obtained in this manner may well result in the
destruction of a large number of trees, rocks and barms so such a weapon
must be cheap and plentiful. Thus, the decision was made in Chapter IV
to design the processor to reasonably low false alarm and error rates,
and to require the exact separation of the three target classes, This
provides a pessimistic estimate of processor performance but leaves the
option to adjust various parameters to increase the probability of
detection or probability of false alarm rates as tactical requirements
allow.
Discussion of Results

The results of the Monte Carlo performance analysis confirm the
utility of developing target classifi~ation algorithms in accordance
with the ®"cookbook™ procedure described in Chapter IV. In general, the
performance of the design was severely degraded when additive Gausaian
noise was added to the 3-D date so that the noise to signal ratio was
greater than 1.0. The performance was also significantly influenced by
the use of 3-D noise filters. While it is clear that the 3-D opening
noise filter is not suitable for use with the features selected and the
noise as modeled, either the 3-D local average or the 3-D closure noise
filters appear to perform quite well, but additional testing would be
required to establish which of the two is best. Likewise, the relative
insensitivity of the proposed design to platform inatabilities of roll
and pitch rate are very promising, but the absolute extent of these
trends remain unresolved. However, it is oclear that a relatively

inexpensive stabilized platform may be all that is needed to isolate the
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sensor (data) from platform motion. On the other hand, scale (altitude)
variations of more than i 2.5% significantly reduced the performance of
the processor. Sensitivity to scale variations are common to most
pattern recognition tasks. If additional insensitivity to scale
variations is required, scale invarient features such as length~to-width
ratios or invarient moments could be wused. The general algorithm
development approach of Chapter IV could readily be adapted to these
feétures as well. Finally, the arbitrary measure of false alarm rate
was not designed to establish performance as such, but was included to
measure the relative difference between the strict and relaxed decision
oriteria.

Since a generally applicable definition of acceptable performance
does not exist, the performance of an algorithm designed in accordance
with Chapter IV procedures must be carefully evaluated with respect to
the task at hand. Specifically, one must compare the risks associated
with not detecting a target to the costs of declaring a nontarget object
a target of interest. Since such an evaluation was not intended, and,
recognizing that costs and risks are often variable or difficult to
define, the Chapter IV design approach has provided an algorithm
selection technique which provides a relatively low false alarm and
error rate. Thus, if improved performance is desired, a relaxed
decision criteria can be applied or the feature acceptance windows ocan
be widened. Of course, any improved performance attained in this manner
would be at the risk of increased potential false alarm rate. As
indicated at the beginning of the chapter, the purpose of this
performance analysis was not to exhaustively characterize the

performance of the processor but was designed to demonstrate the
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potential wutility of the Chapter IV neighborhood transformation
( algorithm design approach and to characterize its relative sensitivities
o

to several common forms of noise and data distortions.
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VI. Conclusions and Recommendatlions

Lonclusions
The following conclusions can be made concerning the uniqueness of
three-dimensional range data, the sasnug fitting feature measurement
algorithm selection procedure, and the results of the Monte Carlo
performance analysis.
1. Actively collected high resolution range data provides a
significant technical opportunity for the designers of tactical
target classification seekers because:
a. The data is unique in that it is relatively free from the
diurnal variations which have historically complicated the
tasks of noise removal and feature selection and extraotion in
passively collected image data.
b. The multi-level information contained in 3-D range data is
directly related to the three-dimensional shapes of objects
within the scene rather thar the thermal emissivity or optical
reflectivity of the scene. This permits the use of features
which are direct measures of the three-dimensional shapes of
the targets.
¢. The consistency of the data and the data's direct
measurement of geometrical shapes provides for the realization
of simple, well understood, and believable target, nontarget,
and background/clutter analytical models which may be used in
extensive Monte Carlo simulations for performance analysis.
The potential for such a realisable target/clutter model will

permit analytical estimates of a systea's perror-nnoo.
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including false alarm rates, to be estimated without

initiating extensive flight teats for data ocollection

purposes.
2. The use of two- and three-dimensional equivalent structuring
elements to describe cellular logic operations provides useful
insight to the geometrical interpretation of sequences of erosion
and dilation neighborhood transforaations.
3. The Chapter IV algorithm design approach uses the unique
concepts of residue set and residue set spread to permit the
evaluation of a neighborhood transformation's feature extraction
effectiveness to proceed in a "cookbook" manner. Thus, given an
arbitrary feature extraction technique, a look up table can be
developed to identify the specific sequence of neighborhood
transformations which demonstrate

a. the ability to conaistently extract that feature in a noise

free environment

b. the lowest potential false alarm rate (assvming uniformly

distributed clutter/false alarms), and

¢. the most relative invariance to object rotation and

translation.
3, The utility of applying the cellular logic algorithm selection
procedure and decision oriteria of Chapter IV was demonstrated by
the development of a 3-D target oclassification processor which,
under various socenario and processor architecture assumptions,
exhibits the following characteriatiocs:

8 the performance of the processor does not degrade

significantly if the scale of the data (altitude of the seasor
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platform) remains within & 2.5 per cent of nominal and the

roll and pitch rates of the sensor are kept at rates easily

attainable by commercially available stabilized platforms,

b.

compared to the strict application of a likelihood ratio

test, the relaxed decision criteria (which accounted for the

similarity of features between target classes) improved the

processor's probability of detection (Pd ) from .T to 1.0

without noise and, in the presence of white additive Gaussian

noise, improved the Pd from .4 to .7 at a noise-to-signal

ratio of about 1.0,

¢. the probability is .95 that the false alarm rate for both

the strict and relaxed decision criteria was less than 5 per

cent in the presence of two~dimensionally correlated Gaussian

noise.

Recommendations
1. The algorithm efficiency measures of residue set and residue’

set spread have demonstrated the feasibility of characterizing the

performance of neighborhood transformations. Additional

investigations into the performance characteristics of neighborhood

transformations may lead to a more powerful means of describing

It 1is entirely feasible for graphical

their performance.

characterizations, similar to a receiver operating characteristie,

to be developed for neighborhood tranaformations.

2. While the Chapter IV design approach provides a well organized

means of aselecting a speocific sequence of neighborhood

SRS P 2t AR e

transformations to acoomplish a task, it is oconditioned upon a

general approach (to feature measurement) Dbeing defined.
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Unfortunately this general approach is presently developed in an ad
hoc manner and, once selected, the implementation of an algorithm
may not be optimal with respect to accomplishing the algorithm in
the fewest number of steps/stages. Likewise, the lack of a
suitable probability space for a large class of neighborhood
transformations limits our understanding of algorithm performance
to Monte Carlo or trial and error analysis, The development and
characterization of a robust neighborhood transformation algebra
would significantly improve our ability to address these issues.

3. A statistically formulated generic 3-D data model which is
suitable for use in Monte Carlo simulations and incorporates
terrain, clutter, vegetation, nontarget and target objects should
be developed so that improved estimates of performance including
false alarm rates can be established. This model  should
incorporate a 3-D coordinate transformation capability to provide
for other than nadir look angles.

4. A processor of similar design but which extracts, measures, and
accepts or rejects features entirely 1in three space should be
evaluated for comparison purposes. This processor would use all
the shape information available in the 3-D data rather than only
two slices as in the Chapter IV processor design and would be 1less
sensitive to the flat terrain assumption.

5. Simplified processor architectures which incorporate fewer than
one branch per feature~target class should be evaluated for
performance. While such simplifications will generally provide for
less optimal algorithm selection and an increase in false alamm

rate, they should be considered for processor sige, weight, and
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cost reduction purposes--especially since a generic 3-D data model,
(w as suggested above, could be used to evaluate the Pd vs Pf'a
>4
tradeoffs associated with these designs prior to constructing

hardware.
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